Skip to main content
Log in

The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Cryogenian Datangpo Formation was deposited during the interglacial time between the Sturtian and Marinoan ice ages. We studied nitrogen isotope compositions and contents of Mo of the black shales from the basal Datangpo Formation in northeastern Guizhou, South China, for an attempt to reconstruct the marine redox change and nitrogen cycle during the interglacial time. Based on lithostratigraphy as well as geochemical profiles, the basal black shales can be divided into four intervals: Interval 1 has the lowest δ15N value (+5.0‰); in interval 2, δ15N values vary between +6.4‰ and +7.4‰ (the first peak); interval 3 records stable values of δ15N around +6‰; and interval 4 is characterized by its higher δ15N values, between +6.7‰ and +7.8‰ (the second peak). The values of enrichment factor of Mo decrease from 56.8 to 2.6 with the ascending stratigraphic trend. It indicated that immediately after the Sturtian glaciations, the marine seawater above the transitional zone between the shelf to slope of the southern margin of the Yangtze Platform was stratified, with shallow seawater being oxic but deep water being sulfidic. Subsequently, high denitrification rates prevailed in expanded suboxic areas in spite of a short emergence of an oxic condition in the surface seawater, and the deep seawaters were still anoxic or even euxinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ader, M., Sansjofre, P., Halverson, G., Busigny, V., Trindade, R., Kunzmann, M., Nogueira A., 2014. Ocean redox Redox structure Structure across the Late Neoproterozoic Oxygenation Event: A nitrogen Nitrogen isotope Isotope perspectivePerspective. Earth & Planetary Science Letters, 364, 1–13

    Article  Google Scholar 

  • Algeo, T.J., Maynard, J.B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206: 289–318

    Article  Google Scholar 

  • Altabet, M. A., 2007. Constraints on Oceanic N Balance/ Imbalance from Sedimentary N-15 Records. Biogeosciences, 4: 75–86

    Article  Google Scholar 

  • Böning, P., Brumsack, H. J., Böttcher, M. E., et al., 2004. Geochemistry of Peruvian near-Surface Sediments. Geochimica et Cosmochimica Acta, 68: 4429–4451

    Article  Google Scholar 

  • Bostick, B. C., Fendorf, S., Helz, G. R., 2003. Differential Adsorption of Molybdate and Tetrathiomolybdate on Pyrite (FeS2). Environmental Science & Technology, 37 (2): 285–291

    Article  Google Scholar 

  • Broecker, W. S., Peng, T. H., 1982. Tracers in the Sea. Eldigio Press, Columbia University, Palisades, N. Y. 689

    Google Scholar 

  • Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113 (1–2): 67–88

    Article  Google Scholar 

  • Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149–155

    Article  Google Scholar 

  • Casciotti, K. L., Sigman, D. M., Ward, B. B. 2003. Linking Diversity and Stable Isotope Fractionation in Ammonia- Oxidizing Bacteria. Geomicrobiology Journal, 20(4): 335–353

    Article  Google Scholar 

  • Chen, X., Li, D., Ling, H., et al., 2008. Carbon and Sulfur Isotopic Compositions of Basal Datangpo Formation, Northern Guizhou, South China: Implications for Depositional Environment. Progress in Natural Science, 18: 421–429

    Article  Google Scholar 

  • Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98

    Article  Google Scholar 

  • Cremonese, L. G. A. Zhou, S., et al., 2014. Nitrogen and Organic Carbon Isotope Stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian Transition in South China. Palaeogeography Palaeoclimatology Palaeoecology, 398 (SI): 165–186

    Article  Google Scholar 

  • Cremonese, L., Zhou, S., Struck, G., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148–165

    Article  Google Scholar 

  • Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145 (1–4): 65–78

    Article  Google Scholar 

  • Erickson, B. E., Helz, G. R., 2000. Molybdenum(VI) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdates. Geochimica et Cosmochimica Acta, 64 (7): 1149–1158

    Article  Google Scholar 

  • Feng, L., Chu, X., Huang, J., et al., 2010. Reconstruction of Paleo-Redox Conditions and Early Sulfur Cycling during Deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18: 632–637

    Article  Google Scholar 

  • Fogel, M. L., Cifuentes, L. A., 1993. Isotope Fractionation during Primary Production. In: Engel, M. H., Macko, S. A. eds., Organic Geochemistry. Plenum Press, New York, 73–98

    Chapter  Google Scholar 

  • Francis C. A., Beman J. M., Kuypers M. M., 2007, New Processes and Players in the Nitrogen Cycle: The Microbial Ecology of Anaerobic and Archaealammonia Oxidation. the ISME Journal, 1: 19–27

    Article  Google Scholar 

  • Galbraith, E. D., Sigman, S. M., Robinson, R. S., et al., 2008. Past Changes in the Marine Nitrogen Cycle. In: Capone, D., Bronk, D., Mulholland, M., Carpenter, E. eds., Nitrogen in the Marine Environment.

    Google Scholar 

  • Elsevier Helz, G. R., Charnock J. M., Mosselmans J. F. W., et al., 1996. Mechanism of Molybdenum Removal from the Sea and Its Concentration in Black Shales: EXAFS Evidence. Geochimica et Cosmochimica Acta, 60 (19): 3631–3642

    Article  Google Scholar 

  • Hild, E., Brumsack, H. J., 1998. Major and Minor Element Geochemistry of Lower Aptian Sediments from the NW German Basin (core Hoheneggelsen KB 40). Cretaceous Research, 19: 615–633

    Article  Google Scholar 

  • Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129–155

    Article  Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 2010. A Neoproterozoic Snowball Earth. Science, 281: 1342–1346

    Article  Google Scholar 

  • Holland, H. D., 1979. Metals in Black Shales: A Reassessment. Economic Geology 74: 676–1680

    Article  Google Scholar 

  • Huerta-Diaz, M. A., Morse, J. W., 1992. Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56 (7): 2681–2702

    Article  Google Scholar 

  • Jiang, G., Kennedy, M.J., Christie-Blick, N., 2003a, Stable Isotopic Evidence for Methane Deeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 426: 822–826

    Article  Google Scholar 

  • Jiang, G., Sohl, L. E., Christie-Blick, N., 2003b, Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 31: 917–920

    Article  Google Scholar 

  • Kikumoto, R., Tahata, M., Nishizawa, M., et al., 2014. Nitrogen Isotope Chemostratigraphy of the Ediacaran and Early Cambrian Platform Sequence at Three Gorges, South China. Gondwana Research. 25: 1057–1069

    Article  Google Scholar 

  • Kump, L. R., 1991. Interpreting Carbon-Isotope Excursions: Strangelove Oceans. Geology, 19: 299–302

    Article  Google Scholar 

  • Li, C., Love, G. D., 2012. Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331: 246–256

    Article  Google Scholar 

  • Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80–83

    Article  Google Scholar 

  • Liu, K. K., Kaplan, I. R., 1988. Variation of Nitrogen Isotope Fractionation during Denitrification and Nitrogen Isotope Balance in the Ocean. EOS 69, 1098

    Google Scholar 

  • Mariotti, A., Mariotti, F., Amarger, N., et al., 1980. Fractionnements Isotopiques de L’azote Lors des Processus d’absorption des Nitrates et de Fixation de l’azote Atmospherique par les Plantes. Physiol. Ve’g. 18: 163–181

    Google Scholar 

  • McLennan, S. M., 1989. Rare-Earth Elements in Sedimentary- Rocks-Influence of Provenance and Sedimentary Processes. Review in Mineralogy, 21: 169–200

    Google Scholar 

  • McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry Geophysics Geosystems, 2: part. no.-2000GC000109

  • Meyers, P. A., Doose, H., 1999. Sources, Preservation, and Thermal Maturity of Organic Matter in Pliocene-Pleistocene Organic-Carbon-Rich Sediments of the Western Mediterranean Sea. In: Zahn, R., Comas, M.C., Kraus, A., et al. eds., Proceedings, Ocean Drilling Program. Scientific Results, 161: 383–390

    Google Scholar 

  • Ohkouchi, N., Nakajima, Y., Okada, H., et al., 2005. Biogeochemical Processes in the Saline Meromictic Lake Kaiike, Japan: Implications from Molecular Isotopic Evidences of Photosynthetic Pigments. Environmental Microbiology, 7 (7): 1009–1116

    Article  Google Scholar 

  • Pennock, J. R., Velinsky, D. V., Ludlam, J. M.,et al., 1996. Isotopic Fractionation of Ammonium and Nitrate during Uptake by Skeletonema Costatum: Implications for 15N Dynamics under Bloom Conditions. Limn. Oceanography, 41: 451–459

    Article  Google Scholar 

  • Pinti D. L. Hashizume K., 2011. Early Life Record from Nitrogen Isotopes. In: Golding, S. D., Glikson, M., eds., Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer

    Google Scholar 

  • Piper, D. Z., 1994. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks. Chemical Geology, 114: 95–114

    Article  Google Scholar 

  • Planavsky, N. J., Rouxel O. J., Bekker A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088–1090

    Article  Google Scholar 

  • Prokopenko M. G., Hammond D. E., Berelson W. M., et al., 2006. Nitrogen Cycling in the Sediments of Santa Barbara Basin and Eastern Tropical North Pacific: Nitrogen Isotopes, Diagenesis and Possible Chemosymbiosis between Two Lithotrophs (Thioploca and Anammox)—Riding on a Glider. Earth and Planetary Science Letters, 242: 186–204

    Article  Google Scholar 

  • Redfield, A. C., 1963. The Influence of Organisms on the Composition of Sea Water. The Sea: 26–77

    Google Scholar 

  • Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian–Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206: 373–391

    Article  Google Scholar 

  • Scott, C., Lyons, T. W., 2012. Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic versus Non-Euxinic Sediments and Sedimentary Rocks: Refining the Paleoproxies. Chemical Geology, 324 (SI): 19–27

    Article  Google Scholar 

  • Sigman D. M., Karsh K. L., Casciotti K. L., 2009. Nitrogen Isotopes in the Ocean. In: Steele J. H., Thorpe S. A., Turekian K. K., eds., Encyclopedia of Ocean Sciences. Academic Press, Oxford, 40–54

    Chapter  Google Scholar 

  • Thomazo, C., Ader, A., Philippot, P., 2011. Extreme 15N-Enrichments in 2.72 Gyr Old Sediments. Evidents for a Turning Point in the Nitrogen Cycle. Geobiology, 9: 107–120

    Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12–32

    Article  Google Scholar 

  • Tribovillard, N., Desprairies, A., Lallier-Vergès, E., et al., 1994. Geochemical Study of Organic-Rich Cycles from the Kimmeridge Clay Formation of Yorkshire (G. B.): Productivity vs. Anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 165–181

    Google Scholar 

  • Tribovillard, N., Riboulleau, A., Lyons, T., et al., 2004. Enhanced Trapping of Molybdenum by Sulfurized Marine Organic Matter of Marine Origin in Mesozoic Limestones and Shales. Chemical Geology, 213 (4): 385–401

    Article  Google Scholar 

  • Van der Weijden, C. H., 2002. Pitfalls of Normalization of Marine Geochemical Data Using a Common Divisor. Marine Geology, 184: 167–187

    Article  Google Scholar 

  • Vine, J. D., Tourtelot, E. B., 1970. Geochemistry of Black Shale Deposits—A Summary Report. Economic Geology, 65: 253–272

    Article  Google Scholar 

  • Vorlicek, T.P., Helz, G.R., 2002. Catalysis by Mineral Surfaces: Implications for Mo Geochemistry in Anoxic Environments. Geochimica et Cosmochimica Acta, 66(21): 3679–3692

    Article  Google Scholar 

  • Vorlicek, T. P., Kahn, M. D., Kasuya, Y., et al., 2004. Capture of Molybdenum in Pyrite-Forming Sediments: Role of Ligand- Induced Reduction by Polysulfides. Geochimica et Cosmochimica Acta, 68 (3): 547–556

    Article  Google Scholar 

  • Wada, E., Hattori, A., 1991. Nitrogen in the Sea: Forms, Abundances, and Rate Processes. CRC Press INC, Florida.

    Google Scholar 

  • Wada, E., Kadonaga, T., Matsuo, S., 1975. 15N Abundance in Nitrogen of Naturally Occurring Substances and Global Assessment of Denitrification from Isotopic Viewpoint. Geomicrobiology Journal, 9: 139–148

    Google Scholar 

  • Wang, X., Shi, X., Tang D.,etal., 2013. Nitrogen Isotope Evidence for Redox Variations at the Ediacaran-Cambrian Transition in South China. Journal of Geology, 121(5): 489–502

    Article  Google Scholar 

  • Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318: 45–59

    Article  Google Scholar 

  • Zhang, Q. R., Chu, X. L., Bahlburg, H., et al., 2003. Stratigraphic Architecture of the Neoproterozoic Glacial Rocks in the “Xiang-Qian-Gui” Region of the Central Yangtze Block, South China. Progress in Natural Science, 13(10): 783–787

    Article  Google Scholar 

  • Zhang, S. H., Jiang G. Q., Han, Y. G., 2008. The Age of the Nantuo Formation and Nantuo Glaciation in South China. Terra Nova, 20(4): 289–294

    Article  Google Scholar 

  • Zhang, S. H., Jiang, G. Q., Zhang, J. M., et al., 2005. U-Pb Sensitive High-Resolution Ion Microprobe Ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic Glaciations. Geology, 33(6): 473–476

    Article  Google Scholar 

  • Zhang, X. Sigman, D. M., Morel, F. M., et al., 2014. Nitrogen Isotope Fractionation by Alternative Nitrogenases and Past Ocean Anoxia. Proceedings of the National Academy of Sciences of the United States of America, 111(13): 4782–4787

    Article  Google Scholar 

  • Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: a Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64 (24): 4165–4178

    Article  Google Scholar 

  • Zhou, C. M., Tucker, R., Xiao, S. et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437–440

    Article  Google Scholar 

  • Zhu, M. Y., Strauss, H., Shields, G. A., 2007. From Snowball Earth to the Cambrian Bioradiation: Calibration of Ediacaran- Cambrian Earth History in South China. Palaeogeography Palaeoclimatology Palaeoecology, 254(1–2): 1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Wang, D., Li, D. et al. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China. J. Earth Sci. 27, 233–241 (2016). https://doi.org/10.1007/s12583-015-0657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0657-1

Key Words

Navigation