Skip to main content
Log in

Interplay of curvature-induced micro- and nanodomain structures in multicomponent lipid bilayers

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

We discuss different mechanisms for curvature-induced domain formation in multicomponent lipid membranes and present a theoretical model that allows us to study the interplay between the domains. The model represents the membrane by two coupled monolayers, which each carry an additional order parameter field describing the local lipid composition. The spontaneous curvature of each monolayer is coupled to the local composition; moreover, the lipid compositions on opposing monolayers are coupled to each other. Using this model, we calculate the phase behavior of the bilayer in mean-field approximation. The resulting phase diagrams are surprisingly complex and reveal a variety of phases and phase transitions, including a decorated microdomain phase where nanodomains are aligned along the microdomain boundaries. Our results suggest that external membrane tension can be used to control the lateral organization of nanodomains (which might be associated with lipid “rafts”) in a multicomponent lipid bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vereb, G., Szöllosi, J., Matko, J., Nagy, P., Farkas, T., Vigh, L., Matyus, L., Waldmann, T.A., Damjanovich, S.: Dynamic, yet structured: the cell membranes three decades after the singer-nicolson model. PNAS 100, 8053–8058 (2003)

    Article  Google Scholar 

  2. Singer, S.J., Nicolson, G.K.: Fluid mosaic model of structure of cell-membranes. Science 175(4023), 720–731 (1972)

    Article  Google Scholar 

  3. Ahmed, S.N., Brown, D.A., London, E.: On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36(36), 10944–10953 (1997)

    Article  Google Scholar 

  4. Brown, D.A., London, E.: Structure and origin of ordered lipid domains in biological membranes. J. Memb. Biol. 164(2), 103–114 (1998)

    Article  Google Scholar 

  5. Leslie, M.: Do lipid rafts exist? Science 334, 1046–1047 (2011)

    Article  Google Scholar 

  6. Lingwood, D., Simons, K.: Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010)

    Article  Google Scholar 

  7. Pike, L.: Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655–667 (2003)

    Article  MathSciNet  Google Scholar 

  8. Pike, L.: Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598 (2006)

    Article  Google Scholar 

  9. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)

    Article  Google Scholar 

  10. Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V.N., Hein, B., von Middendorf, C., Schönle, A., Hell, S.W.: Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009)

    Article  Google Scholar 

  11. Mizuno, H., Abe, M., Dedecker, P., Makino, A., Rocha, S., Ohno-Iwashita, Y., Hofkens, J., Kobayashi, T., Miyawaki, A.: Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem. Sci. 2, 1548–1553 (2011)

    Article  Google Scholar 

  12. Owen, D.M., Magenau, A., Williamson, D., Gaus, K.: The lipid raft hypothesis revisited—new insights on raft composition and function from super-resolution fluorescence microscopy. Bioessays 34, 739–747 (2012)

    Article  Google Scholar 

  13. Katsaras, J., Tristram-Nagle, S., Liu, Y., Headrick, R.L., Fontes, E., Mason, P.C., Nagle, J.F.: Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys. Rev. E 61, 5668–5677 (2000)

    Article  Google Scholar 

  14. Koynova, R., Caffrey, M.: Phases and phase transitions of the phosphatidylcholines. Biochimica et Biophysica Acta-Rev. Biomemb. 1376, 91–145 (1998)

    Article  Google Scholar 

  15. Koynova, R., Caffrey, M.: An index of lipid phase diagrams. Chem. Phys. Lipids 115, 107–219 (2002)

    Article  Google Scholar 

  16. Leidy, C., Kaasgaard, T., Crowe, J.H., Mouritsen, O.G., Jorgensen, K.: Ripples and the formation of anisotropic lipid domains: imaging two-component supported double bilayers by atomic force microscopy. Biophys. J. 83, 2625–2633 (2002)

    Article  Google Scholar 

  17. Lenz, O., Schmid, F.: Structure of symmetric and asymmetric ripple phases in lipid bilayers. Phys. Rev. Lett. 98, 058104 (2007)

    Article  Google Scholar 

  18. Schmid, F., Dolezel, S., Loenz, O., Meinhard, S.: On ripples and rafts: curvature induced nanoscale structures in lipid membranes. J. Phys. Conf. Ser. 487, 012004 (2014)

    Article  Google Scholar 

  19. Connell, S.D., Heath, G., Olmsted, P.D., Kisil, A.: Critical point fluctuations in supported lipid membranes. Faraday Disc. 161, 91–111 (2013)

    Article  Google Scholar 

  20. Armstrong, C.L., Marquardt, D., Dies, H., Kucerka, N., Yamani, Z., Harroun, T.A., Katsaras, J., Shi, A.C., Rheinstädter, M.C.: The observation of highly ordered domains in membranes with cholesterol. PLoS One 8, E66162 (2013)

    Article  Google Scholar 

  21. Nickels, J.D., Cheng, X., Mostofian, B., Stanley, C., Lindner, B., Heberle, F.A., Perticaroli, S., Feygenson, M., Egami, T., Standaert, R.F., Smith, J.C., Myles, D.A.A., Ohl, M., Katsaras, J.: Mechanical properties of nanoscopic lipid domains. J. Am. Chem. Soc. (2015). doi:10.1021/jacs.5b08894

  22. Rheinstädter, M.C., Mouritsen, O.G.: Small-scale structure in fluid cholesterol-lipid bilayers. Curr. Opin. Colloid Interface Sci. 18, 440–447 (2013). doi:10.1016/j.cocis.2013.07.001

    Article  Google Scholar 

  23. Toppozini, L., Meinhardt, S., Armstrong, C.L., Yamani, Z., Kuvcerka, N., Schmid, F., Rheinstädter, M.: The structure of cholesterol in lipid rafts. Phys. Rev. Lett. 113, 228101 (2014)

    Article  Google Scholar 

  24. Baumgart, T., Hess, S.T., Webb, W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)

    Article  Google Scholar 

  25. Veatch, S.L., Keller, S.L.: Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85(5), 3074–3083 (2003)

    Article  Google Scholar 

  26. Veatch, S.L., Keller, S.L.: Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94, 148101 (2005)

    Article  Google Scholar 

  27. Veatch, S.L., Keller, S.L.: Seeing spots: complex phase behavior in simple membranes. Biochimica et Biophysica Acta 1746, 172–185 (2005)

    Article  Google Scholar 

  28. Veatch, S.L., Cicuta, P., Sengupta, P., Honerkamp-Smith, A.R., Holowka, D., Baird, B.: Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008)

    Article  Google Scholar 

  29. Honerkamp-Smith, A.R., Cicuta, P., Collins, M.D., Veatch, S.L., den Nijs, M., Schick, M., Keller, S.J.: Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 95, 236–246 (2008)

    Article  Google Scholar 

  30. Honerkamp-Smith, A.R., Veatch, S.L., Keller, S.J.: An introduction to critical points for biophysicists: observations of compositional heterogeneity in lipid membranes. Biochimica et Biophysica Acta 1788, 53–63 (2009)

    Article  Google Scholar 

  31. Veatch, S.L., Soubias, O., Keller, S.L., Gawrisch, K.: Critical fluctuations in domain-forming lipid mixtures. PNAS 104, 17650–17655 (2007)

    Article  Google Scholar 

  32. Komura, S., Andelman, D.: Physical aspects of heterogeneities in multi-component lipid membranes. Adv. Colloid Interface Sci. 208, 34–46 (2014)

    Article  Google Scholar 

  33. Brewster, R., Pincus, P.A., Safran, S.A.: Hybrid lipids as a biological surface-active component. Biophys. J. 97, 1087–1094 (2009)

    Article  Google Scholar 

  34. Hirose, Y., Komura, S., Andelman, D.: Coupled modulated bilayers: a phenomenological model. ChemPhysChem 10, 2839–2846 (2009)

    Article  Google Scholar 

  35. Hirose, Y., Komura, S., Andelman, D.: Concentration fluctuations and phase transitions in coupled modulated bilayers. Phys. Rev. E 86, 021916 (2012)

    Article  Google Scholar 

  36. Palmieri, B., Safran, S.A.: Hybrid lipids increase the probability of fluctuating nanodomains in mixed membranes. Langmuir 29, 5246–5261 (2013)

    Article  Google Scholar 

  37. Palmieri, B., Yamamoto, T., Brewster, R.C., Safran, S.A.: Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments. Adv. Colloid Interface Sci. 208, 58–65 (2014)

    Article  Google Scholar 

  38. Simons, K., Vaz, W.L.C.: Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004)

    Article  Google Scholar 

  39. Yamamoto, T., Brewster, R., Safran, S.A.: Chain ordering of hybrid lipids can stabilize domains in saturated/hybrid/cholesterol lipid membranes. EPL 91, 28002 (2010)

    Article  Google Scholar 

  40. Yamamoto, T., Safran, S.A.: Line tension between domains in multicomponent membranes is sensitive to the degree of unsaturation of hybrid lipids. Soft Matter 7, 7021–7033 (2011)

    Article  Google Scholar 

  41. Leibler, S., Andelman, D.: Ordered and curved meso-structures in membranes and amphiphilic films. J. de Phys. 48, 2013–2018 (1987)

    Article  Google Scholar 

  42. Safran, S.A., Pincus, P., Andelman, D.: Theory of spontaneous vesicle formation in surfactant mixtures. Science 248, 354–356 (1990)

    Article  Google Scholar 

  43. Harden, J.L., MacKintosh, F.C.: Shape transformations of domains in mixed-fluid films and bilayer membranes. Eur. Lett. 28, 495–500 (1994)

    Article  Google Scholar 

  44. Kumar, P.B.S., Gompper, G., Lipowsky, R.: Modulated phases in multicomponent fluid membranes. Phys. Rev. E 60, 4610–4618 (1999)

    Article  Google Scholar 

  45. Sadeghi, S., Müller, M., Vink, R.L.C.: Raft formation in lipid bilayers coupled to curvature. Biophys. J. 107, 1591–1600 (2014)

    Article  Google Scholar 

  46. Schick, M.: Membrane heterogeneity: manifestation of a curvature-induced microemulsion. Phys. Rev. E 85, 031902 (2012)

    Article  Google Scholar 

  47. Shlomovitz, R., Maibaum, L., Schick, M.: Macroscopic phase separation, modulated phases, and microemulsions: a unified picture of rafts. Biophys. J. 106, 1979–1985 (2014)

    Article  Google Scholar 

  48. Shlomovitz, R., Schick, M.: Model of a raft in both leaves of an asymmetric lipid bilayer. Biophys. J. 105, 1400–1413 (2013)

    Article  Google Scholar 

  49. Meinhardt, S., Vink, R.L.C., Schmid, F.: Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. PNAS 12, 4476–4481 (2013)

    Article  Google Scholar 

  50. Collins, M.D., Keller, S.L.: Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. PNAS 105, 124–128 (2008)

    Article  Google Scholar 

  51. Aranda-Espinoza, H., Berman, A., Dan, N., Pincus, P., Safran, S.: Interaction between inclusions embedded in membranes. Biophys. J. 71, 648–656 (1996)

    Article  Google Scholar 

  52. Brannigan, G., Brown, F.: A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayer. Biophys. J. 90, 1501–1520 (2006)

    Article  Google Scholar 

  53. Dan, N., Berman, A., Pincus, P., Safran, S.A.: Membrane-induced interactions between inclusions. J. de Phys. II(4), 1713–1725 (1994)

    Google Scholar 

  54. Dan, N., Pincus, P., Safran, S.A.: Membrane-induced interactions between inclusions. Langmuir 9, 2768–2771 (1993)

    Article  Google Scholar 

  55. Neder, J., West, B., Nielaba, P., Schmid, F.: Coarse-grained simulations of membranes under tension. J. Chem. Phys. 132, 115101 (2010)

    Article  Google Scholar 

  56. West, B., Brown, F.L.H., Schmid, F.: Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. Biophys. J. 96, 101–115 (2009)

    Article  Google Scholar 

  57. Safran, S.A.: Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Perseus Books, Cambridge (1994)

    MATH  Google Scholar 

  58. Farago, O., Pincus, P.: The effect of thermal fluctuations on schulman area elasticity. Eur. Phys. J. E 11, 399–408 (2003)

    Article  Google Scholar 

  59. Fournier, J.B., Barbetta, C.: Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. Phys. Rev. Lett. 100, 078103 (2008)

    Article  Google Scholar 

  60. Schmid, F.: Are stress-free membranes really “tensionless”? EPL 95, 28008 (2011)

    Article  Google Scholar 

  61. Shiba, H., Noguchi, H., Fournier, J.B.: Monte Carlo study of the frame, fluctuation and internal tensions of fluctuating membranes with fixed area (preprint) (2015). arxiv:1507.08722

  62. Cai, W., Lubensky, T.C., Nelson, P., Powers, T.: Measure factors, tension, and correlations of fluid membranes. J. de Phys. II 4, 931–949 (1994)

    Google Scholar 

  63. Farago, O., Pincus, P.: Statistical mechanics of bilayer membrane with a fixed projected area. J. Chem. Phys. 120, 2934–2950 (2004)

    Article  Google Scholar 

  64. Diamant, H.: Model-free thermodynamics of fluid vesicles. Phys. Rev. E 84, 0611203 (2011)

    Article  Google Scholar 

  65. Farago, O.: Mechanical surface tension governs membrane thermal fluctuations. Phys. Rev. E 84, 051944 (2011)

    Article  Google Scholar 

  66. Noguchi, H., Gompper, G.: Meshless membrane model based on the moving least-squares method. Phys. Rev. E 73, 021903 (2006)

    Article  Google Scholar 

  67. Wang, Z.J., Frenkel, D.: Modeling flexible amphiphilic bilayers: a solvent-free off-lattice Monte Carlo study. J. Chem. Phys. 122, 234711 (2005)

    Article  Google Scholar 

  68. Imparato, A.: Surface tension in bilayer membranes with fixed projected area. J. Chem. Phys. 124, 154714 (2006)

    Article  Google Scholar 

  69. Stecki, J.: Balance of forces in simulated bilayers. J. Phys. Chem. B 112(14), 4246–4252 (2008)

    Article  Google Scholar 

  70. Tarazona, P., Chacon, E., Bresme, F.: Thermal fluctuations and bending rigidity of bilayer membranes. J. Chem. Phys. 139, 094902 (2013)

    Article  Google Scholar 

  71. Akimov, S.A., Kuzmin, P.I., Zimmerberg, J., Cohen, F.S.: Lateral tension increases the line tension between two domains in a lipid bilayer membrane. Phys. Rev. E 75, 011919 (2005)

    Article  Google Scholar 

  72. Watson, M.C., Morriss-Andrews, A., Welch, P.M., Brown, F.L.H.: Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers II: finite surface tensions. J. Chem. Phys. 139, 084706 (2013)

    Article  Google Scholar 

  73. Bohinc, K., Kralj-Iglic, V., May, S.: Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J. Chem. Phys. 119, 7435–7444 (2003)

    Article  Google Scholar 

  74. Fournier, J.B.: Coupling between membrane tilt-difference and dilation: a new “ripple” instability and multiple crystalline inclusions phases. Eur. Lett. 43, 725–730 (1998)

    Article  Google Scholar 

  75. Fournier, J.B.: Microscopic membrane elasticity and interactions among membrane inclusions: interplay between the shape, dilation, tilt and tilt-difference modes. Eur. Phys. J. B 11, 261–272 (1999)

    Article  MathSciNet  Google Scholar 

  76. Fošnarič, M., Iglič, A., May, S.: Influence of rigid inclusions on the bending elasticity of a lipid membrane. Phys. Rev. E 74, 051503 (2006)

    Article  Google Scholar 

  77. Watson, M.C., Penev, E.S., Welch, P.M., Brown, F.L.H.: Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. J. Chem. Phys. 135, 244701 (2011)

    Article  Google Scholar 

  78. Kollmitzer, B., Heftberger, P., Rappolt, M., Pabst, G.: Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter 9, 10877–10884 (2013)

    Article  Google Scholar 

  79. Kuzmin, P.I., Akimov, S.A., Chizmadzhev, Y.A., Zimmerberg, J., Cohen, F.S.: Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys. J. 88, 1120–1133 (2005)

    Article  Google Scholar 

  80. Schmid, F.: Fluctuations in lipid bilayers: Are they understood? Biophys. Rev. Lett. 8, 1–20 (2013). doi:10.1142/S1793048012300113

    Article  Google Scholar 

  81. Neder, J., Nielaba, P., West, B., Schmid, F.: Interactions of membranes with coarse-grain proteins: a comparison. New J. Phys. 14, 125017 (2012)

    Article  Google Scholar 

  82. Marsh, D.: Elastic curvature constants of lipid monolayers and bilayers. Chem. Phys. Lipids 144, 146–159 (2006)

    Article  Google Scholar 

  83. Lindahl, E., Edholm, O.: Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79, 426–433 (2000)

    Article  Google Scholar 

  84. Marrink, S.J., Risselada, H.J., Yefimov, S., Tielemann, D.P., de Vries, A.H.: The martini force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7823 (2007)

    Article  Google Scholar 

  85. Gauthier, N.C., Masters, T.A., Sheetz, M.: Mechanical feedback between membrane tension and dynamics. Trends Cell Biol. 22, 527–535 (2012)

    Article  Google Scholar 

  86. Pontes, B., Ayala, Y., Fonseca, A., Romao, L., Amaral, R., Salgado, L., Lima, F.R., Farina, M., Viana, N.B., Moura-NEto, V., Nussenzveig, H.M.: Membrane elastic properties and cell function. PLoS One 8, 67708 (2013)

    Article  Google Scholar 

  87. Brazovskii, S.A.: Phase transitions of an isotropic system to a nonuniform state. Sov. Phys. JETP 41, 85–89 (1975)

    Google Scholar 

  88. Needham, D., Nunn, R.S.: Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 997–1009 (1990)

    Article  Google Scholar 

  89. Evans, E., Heinrich, V., Ludwig, F., Rawicz, W.: Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350 (2003)

    Article  Google Scholar 

  90. Amazon, J.J., Goh, S.L., Feigenson, G.W.: Competition between line tension and curvature stabilizes modulated phase patterns on the surface of giant unilamellar vesicles: a simulation study. Phys. Rev. E 87, 022708 (2013)

    Article  Google Scholar 

  91. Hohenberg, P.C., Swift, J.B.: Metastability in fluctuation-driven first-order transitions: nucleation of lamellar phases. Phys. Rev. E 52, 1828–1845 (1995)

    Article  Google Scholar 

  92. Honerkamp-Smith, A.R., Machta, B.B., Keller, S.J.: Experimental observations of dynamic critical phenomena in a lipid membrane. Phys. Rev. Lett. 108, 26507 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The ideas presented in this paper are based on previous work, mostly simulations, that were carried out by Stefan Dolezel, Gerhard Jung, Olaf Lenz, Sebastian Meinhardt, Jörg Neder, and Beate West. These simulations have given us trust in the coupled monolayer model which on which the present model is built. We also wish to thank Frank Brown, Laura Toppozini, Maikel Rheinstädter, and Richard Vink for collaborations that have helped to shape our view on lipid bilayers. We thank in particular Michael Schick for helpful comments on the manuscript and for pointing out Refs. [85, 86, 90].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Schmid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodbek, L., Schmid, F. Interplay of curvature-induced micro- and nanodomain structures in multicomponent lipid bilayers. Int J Adv Eng Sci Appl Math 8, 111–120 (2016). https://doi.org/10.1007/s12572-015-0152-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0152-z

Keywords

Navigation