Skip to main content
Log in

Abstract

Macroscopic traffic flow models are suited for large scale, network wide applications where the macro-characteristics of the flow are of prime interest. A clear understanding of the existing macro-level traffic flow models will help in modelling of varying traffic scenarios more accurately. Existing state-of-the-art reports on traffic flow models have not considered macro-level models exclusively. This paper gives a review of macroscopic modelling approaches used for traffic networks including recent research in the past decade. The modelling of the two main components of the network i.e. links and nodes are reviewed separately in two sections and solution procedures are discussed followed by a synthesis on the advantages and disadvantages of these models. This review should encourage efficient research in this area towards network level application of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of vehicular traffic flow modelling. In: Proc. Inst. Mech. Eng. I. 283–301 (2001)

  2. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II, A theory of traffic flow on long crowed roads. Proc. R. Soc. A 229, 281–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  3. Richards, P.I.: Shockwaves on the highway. Oper. Res. 4(1), 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  4. Transportation Research Board: Revised Monograph on Traffic Flow Theory: A State-of-the-Art- Report. Transportation Research Board, National Research Council, Washington, DC. http://www.tfhrc.gov/its/tft/tft.htm (1997). Accessed 14 March 2011

  5. Munjal, P.K., Pipes, L.A.: Propagation of on-ramp density perturbations on unidirectional two and three lane freeways. Transp. Res. 5(4), 241–255 (1971)

    Article  Google Scholar 

  6. Munjal, P.K., Hsu, Y.S., Lawrence, R.L.: Analysis and validation of lane drop effects on multilane freeways. Transp. Res. 5(4), 257–266 (1971)

    Article  Google Scholar 

  7. Holland, E.N., Woods, A.W.: A continuum model for the dispersion of traffic on two-lane roads. Transp. Res. B 31(6), 473–485 (1997)

    Article  Google Scholar 

  8. Greenberg, J.M., Klar, A., Rascle, M.: Congestion on multilane highways. SIAM J. Appl. Math. 63(3), 813–818 (2003)

    MathSciNet  Google Scholar 

  9. Laval, J.A.: Some properties of a multi-lane extension of the kinematic wave model. Working paper, Intelligent Transportation Systems. University of California, Berkeley (2003)

  10. Zhang, H.M., Jin, W.L.: A kinematic wave traffic flow model for mixed traffic. Transp. Res. Rec. 1802, 197–204 (2002)

    Article  Google Scholar 

  11. Logghe, S., Immers, L.H.: Heterogeneous traffic flow modelling with the LWR model using passenger car equivalents. In: Proceedings of the 10th World Congress on ITS, Madrid. http://www.kuleuven.be/traffic/dwn/P2003E.pdf (2003). Accessed 13 March 2012

  12. Chanut, S., Buisson, C.: A macroscopic model and its numerical solution for a two flow mixed traffic with different speeds and lengths. Transp. Res. Rec. 1852, 209–219 (2003)

    Article  Google Scholar 

  13. Logghe, S.: Dynamic modelling of heterogeneous vehicular traffic. PhD Thesis, KU Leuven, Belgium (2003)

  14. Wong, G.C.K., Wong, S.C.: A multi-class traffic flow model—an extension of LWR model with heterogeneous drivers. Transp. Res. A 36(9), 763–848 (2002)

    Google Scholar 

  15. Gavage, S.B., Colombo, R.M.: An n-populations model for traffic flow. Eur. J. Appl. Math. 14(5), 587–612 (2003)

    Article  MATH  Google Scholar 

  16. Lebacque, J.P.: A two-phase bounded acceleration traffic flow model. Analytical solutions and applications. Transp. Res. Rec. 1852, 220–230 (2003)

    Article  Google Scholar 

  17. Leclercq, L., Laval, J.A.: A multiclass car following rule based on the LWR model. In: Rolland C.A., Chevoir F., Gondrte P., Lassarre S., Lebaque J.P., Schreckenberg M. (eds.) Traffic and Granular Flow ’07, pp. 151–160. Springer, Heidelberg (2009)

  18. Li, X., Lu, H.: An extension of LWR model considering slope and heterogeneous drivers. In: International Conference on Computer and Information Science, pp. 1236–1240. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5709505 (2010). Accessed 12 Nov 2011

  19. Zhu, Z., Zhang, G., Wu, T.: Numerical analysis of freeway traffic flow dynamics under multi-class drivers. Transp. Res. Rec. 1852, 201–208 (2003)

    Article  Google Scholar 

  20. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. B 28(4), 269–287 (1994)

    Article  Google Scholar 

  21. Newell, G.F.: Comments on traffic dynamics. Transp. Res. B 23(5), 386–389 (1988)

    Article  MathSciNet  Google Scholar 

  22. Daganzo, C.F.: The cell transmission model, Part II: network traffic. Transp. Res. B 29(2), 79–93 (1995)

    Article  Google Scholar 

  23. Nagel, K., Schreckenberg, M.: A cellular automation model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)

    Article  Google Scholar 

  24. Daganzo, C.F.: The lagged cell transmission model. In: Ceder A. (ed.) Transportation and Traffic Theory, Proceedings of the 14th International Symposium on Transportation and Traffic Theory, pp. 81–104. Pergamon, Amsterdam (1999)

  25. Szeto, W.Y.: Enhanced lagged cell transmission model for dynamic traffic assignment. Transp. Res. Rec. 2085, 76–85 (2009)

    Article  Google Scholar 

  26. Laval, J.A., Daganzo, C.: Working paper, Intelligent Transportation Systems. University of California, Berkeley (2004)

  27. Hu, X., Wang, W., Sheng, H.: Urban Traffic flow prediction with variable cell transmission model. J. Transp. Sys. Eng. Inf. Technol. 10(4), 73–78 (2010)

    Google Scholar 

  28. Chen, X., Shi, Q., Li, L.: Location specific cell transmission model for freeway traffic. Tsinghua Sci. Technol. 15(4), 475–480 (2010)

    Article  MATH  Google Scholar 

  29. Long, J., Gao, Z., Zhao, X., Lian, A., Orenstein, P.: Urban traffic jam simulation based on the cell transmission model. Netw. Spat. Econ. 11, 43–64 (2011)

    Article  MathSciNet  Google Scholar 

  30. Yperman, I.: The link transmission model for dynamic network loading. PhD Thesis, KU Leuven, Belgium (2007)

  31. Nair, R., Mahmassani, H.S., Hooks, E.M.: A porous flow approach to modelling heterogeneous traffic in disordered system. Transp. Res. B (2011). doi:10.1016/j.trb.2011.05.009

    Google Scholar 

  32. Leveque, R.J.: Finite volume methods. In: Leveque, R.J. (ed.) Finite Volume Methods for Hyperbolic Problems, pp. 64–348. Cambridge University Press, Cambridge (2002)

    Chapter  Google Scholar 

  33. Payne, H.J.: Models for freeway traffic and control. In: Bekey, G.A. (ed.) Mathematical Models of Public Systems, pp. 51–61. Simulation Council, La Jolla (1971)

    Google Scholar 

  34. Ross, P.: Traffic dynamics. Transp. Res. B 22(6), 421–435 (1988)

    Article  Google Scholar 

  35. Kuhne, R.D.: Macroscopic freeway model for dense traffic—stop-start waves and incident detection. In: Volmuller J., Hamerslag R., Technische Universiteit Delft (eds.) Proceedings of the 9th International Symposium on Transportation and Traffic Theory, pp. 20–42. VNU Science Press, Utrecht (1984)

  36. Kuhne, R.D.: Freeway control and incident detection using a stochastic continuum theory of traffic flow. In: Proceedings of the 1st International Conference on Applications of Advanced Technologies in Transportation Engineering, San Diego, CA, pp. 287–292 (1989)

  37. Michalopoulos, P.G., Yi, P., Lyrintzis, A.S.: Continuum modelling of traffic dynamics on congested freeways. Transp. Res. B 27(4), 315–332 (1993)

    Article  Google Scholar 

  38. Kotsialos, A., Papageorgiou, M.: Traffic flow modelling of large-scale motorway networks using the macroscopic modelling tool METANET. IEEE Trans. Intell. Transp. Syst. 3(4), 282–292 (2002)

    Article  Google Scholar 

  39. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  40. Jin, W.L., Zhang, H.M.: The formation and structure of vehicle clusters in the Payne–Whitham traffic flow model. Transp. Res. B 37, 207–223 (2003)

    Article  Google Scholar 

  41. Li, T.: Nonlinear dynamics of traffic jams. Physica D 207, 41–51 (2009)

    Article  Google Scholar 

  42. Daganzo, C.F.: Requiem of second-order fluid approximations of traffic flow. Transp. Res. B 2(4), 277–286 (1995)

    Article  Google Scholar 

  43. Liu, G., Lyrintzis, A.S., Michalopoulos, P.G.: Improved high-order model for freeway traffic flow. Transp. Res. Rec. 1644, 37–46 (1998)

    Article  Google Scholar 

  44. Aw, A., Rascle, M.: Resurrection of “Second Order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Moutari, S., Rascle, M.: A hybrid Lagrangian model based on the Aw–Rascle traffic flow model. SIAM J. Appl. Math. 68(2), 413–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, H.M.: A theory of non equilibrium traffic flow. Transp. Res. B 32(7), 485–498 (1998)

    Article  Google Scholar 

  47. Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. B 36(3), 275–290 (2002)

    Article  Google Scholar 

  48. Lebacque, J.P., Haj-Salem, H., Mammar, S.: Second order traffic flow modelling: supply–demand analysis of the inhomogeneous Riemann problem and of boundary conditions. In: Proceedings of the 16th Mini-EURO Conference and 10th Meet, pp. 108–115. EWGT. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.682 (2005). Accessed 22 Feb 2012

  49. Lebacque, J.P., Mammar, S., Haj-Salem, H.: The Aw–Rascle and Zhang’s model: vacuum problems, existence and regularities of the solutions of the Riemann problem. Transp. Res. B 41, 710–721 (2007)

    Article  Google Scholar 

  50. Helbing, D.: Gas-kinetic derivation of Navier–Stokes-like traffic equations. Phys. Rev. E 53(3), 2266–2381 (1996)

    Article  MathSciNet  Google Scholar 

  51. Prigogine, I., Andrews, F.C.: A Boltzmann-like approach of traffic flow. Oper. Res. 8(6), 789–797 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  52. Paveri-Fontana, S.L.: On Boltzmann-like treatment of traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis. Transp. Res. 9, 225–235 (1973)

    Article  Google Scholar 

  53. Hoogendoorn, S.P.: Multiclass continuum modelling of multiclass traffic flow. PhD Thesis, T99/5, TRAIL Thesis series, Delft University Press (1999)

  54. Hoogendoorn, S.P., Bovy, P.H.L.: Modelling multiple user-class traffic flow. Transp. Res. B 34(2), 123–146 (2000)

    Article  Google Scholar 

  55. Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. American Elsevier, New York (1971)

    MATH  Google Scholar 

  56. Li, S.F., Zhang, P., Wong, S.C.: Conservation form of Helbing’s fluid dynamic traffic flow model. Appl. Math. Mech. (Engl. Ed.) 32(9), 1109–1118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Helbing, D.: Derivation and empirical validation of a refined traffic flow model. Physica A 233(1–2), 253–282 (1996)

    Article  Google Scholar 

  58. Helbing, D., Hennecke, A., Shvetsov, V., Trieber, M.: MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transp. Res. B 35(2), 183–211 (2001)

    Article  Google Scholar 

  59. Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 49, 4030–4033 (1997)

    Article  Google Scholar 

  60. Hoogendoorn, S.P., Bovy, P.H.L.: Multiclass macroscopic traffic flow modelling: a multi-lane generalization using gas-kinetic theory. In: Ceder A. (ed.) Transportation and Traffic Theory, Proceedings of the 14th International Symposium on Transportation and Traffic Theory, pp. 27–50. Pergamon, Amsterdam (1999)

  61. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. B 36, 405–419 (2002)

    Article  Google Scholar 

  62. Helbing, D., Trieber, M.: Numerical simulation of macroscopic traffic equations. Comput. Sci. Eng. 1(5), 89–98 (1999)

    Article  Google Scholar 

  63. Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9, 545–567 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  64. Bando, M., Hasabe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  65. Jiang, R., Wu, Q.S.: Extended speed gradient model for mixed traffic. Transp. Res. Rec. 1883, 78–84 (2004)

    Article  Google Scholar 

  66. Tang, C.F., Jiang, R., Wu, Q.S., Wiwathanapataphee, B., Hu, Y.H.: Mixed traffic flow in anisotropic continuum model. Transp. Res. Rec. 1999, 13–22 (2007)

    Article  Google Scholar 

  67. Del Castillo, J.M., Pintado, P., Benitez, F.G.: A formulation for the reaction time of traffic flow models. In: Daganzo C. (ed.) Transportation and Traffic Theory, Proceedings of the 12th International Symposium on Transportation and Traffic Theory, pp. 387–405. Elsevier, Amsterdam (1993)

  68. Tang, C.F., Jiang, R., Wu, Q.S.: Extended speed gradient model for traffic flow on two-lane freeways. Chin. Phys. 16(6), 1570–1575 (2007)

    Article  Google Scholar 

  69. Tang, T.Q., Huang, H.J., Zhao, S.G., Shang, H.Y.: A new dynamic model for heterogeneous traffic flow. Phys. Lett. A 373, 2461–2466 (2009)

    Article  MATH  Google Scholar 

  70. Darbha, S., Rajagopal, K.R.: Aggregation of a class of nonlinear interconnected dynamical systems. Math. Probl. Eng. Theory Methods Appl. 7, 379–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang, P., Wong, S.C., Shu, C.W.: A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. J. Comput. Phys. 212(2), 739–756 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ngoduy, D., Hoogendoorn, S.P., Van Zuylen, H.J.: Cross-comparison of numerical schemes for macroscopic traffic flow models. Transp. Res. Rec. 1876, 52–61 (2004)

    Google Scholar 

  73. Cremer, M., Papageorgiou, M.: Parameter identification for a traffic flow model. Automatica 17(6), 837–843 (1981)

    Article  MathSciNet  Google Scholar 

  74. Mohan, R., Ramadurai, G.: A Case for advanced traffic flow models in DTA. In: Presented at the 4th International Symposium on Dynamic Traffic Assignment. Martha Vineyard, Vineyard Haven (2012)

  75. Papageorgiou, M.: Some remarks on macroscopic traffic flow modelling. Transp. Res. A 32(5), 323–329 (1997)

    Google Scholar 

  76. Daganzo, C.F., Lin, W.H., Del Castillo, J.M.: A simple physical principle for the simulation of freeways with special lanes and priority vehicles. Transp. Res. B 31(2), 103–125 (1997)

    Article  Google Scholar 

  77. Helbing, D.: Derivation of non local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models. Eur. Phys. J. B 69, 539–548 (2009)

    Article  MathSciNet  Google Scholar 

  78. Bagnerini, P., Rascle, M.: A multi-class homogenized hyperbolic model of traffic flow. SIAM J. Math. Anal. 35(4), 949–973 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  79. Colombo, R.M.: A 2 × 2 hyperbolic traffic flow model. Math. Comput. Model. 35, 683–688 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. Tampere, C.M.J., van Arem, B., Hoogendoorn, S.P.: Gas Kinetic traffic flow modelling including continuous driver behavior models. Transp. Res. Rec. 1852, 231–238 (2003)

    Article  Google Scholar 

  81. Jin, W.L., Zhang, H.M.: On the distribution schemes for determining flows through a merge. Transp. Res. B 37(6), 521–540 (2003)

    Article  Google Scholar 

  82. Lebacque, J.P.: The Godunov scheme and what it means for first order traffic flow models. In: Lesort J.B. (ed.) Transportation and Traffic Theory, Proceedings of the 13th International Symposium on Transportation and Traffic Theory, pp. 647–677. Pergamon, Tarrytown, New York (1996)

  83. Tampere, C.M.J., Corthout, R., Cattrysse, D., Immerse, L.H.: A generic class of first order node models for dynamic macroscopic simulation of traffic flows. Transp. Res. B 45, 289–309 (2011)

    Article  Google Scholar 

  84. Ni, D., Leonard, J.D.: A simplified kinematic wave model at a merge bottleneck. Appl. Math. Model. 29(11), 1054–1072 (2005)

    Article  MATH  Google Scholar 

  85. Lebacque, J.P.: Intersection modelling, application to macroscopic network traffic flow models and traffic management. In: Hoogerdorn SP., Luding S., Bovy P.H.L., Schreckenberg M., Wolf D.E. (eds.) Traffic and Granular Flow ’03, pp. 261–278. Springer, Heidelberg (2005)

  86. Holden, H., Riserbo, N.H.: A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. 26(4), 999–1017 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  87. Herty, M., Klar, A.: Modelling, simulation and optimization of traffic flow networks. SIAM J. Sci. Comput 25(3), 1066–1087 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  88. Coclite, G.M., Garavello, M., Piccoli, B.: Traffic flow on a road network. SIAM J. Math. Anal. 36(6), 1862–1886 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  89. Durlin, T., Henn, V.: A delayed flow intersection model for dynamic traffic assignment. In: Proceedings of the 16th Mini-EURO Conference and 10th Meet, pp. 78–81. EWGT. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.2228 (2005). Accessed 14 March 2011

  90. Lebacque, J.P., Koshyaran, M.M.: First order macroscopic traffic flow models: intersection modelling, network modelling. In: Mahmassani H.S. (ed.) Transportation and Traffic Theory, Proceedings of the 16th International Symposium on Transportation and Traffic Theory, pp. 365–386. Elsevier, Amsterdam (2005)

  91. Garavello, M., Piccoli, B.: Traffic flow on a road network using the Aw–Rascle model. Commun. Partial Differ. Equ. 31(2), 243–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  92. Herty, M., Rascle, M.: Coupling conditions for a class of “second-order” models for traffic flow. SIAM J. Math. Anal. 38(2), 595–616 (2006)

    Article  MathSciNet  Google Scholar 

  93. Herty, M., Moutari, S., Rascle, M.: Intersection modelling with a class of “second-order” models for vehicular traffic flow. In: Gavage, S.B., Serre, D. (eds.) Hyperbolic Problems: Theory, Numerics, Applications, pp. 755–763. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  94. Gentile, G., Meschini, L., Papola, N.: Fast heuristics for continuous dynamic shortest paths and all-or-nothing assignment. In: Proceedings of the 35th Annual Conference of the Italian Operation Research Society. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.2983 (2004). Accessed 5 May 2011

  95. Gentile, G., Meschini, L., Papola, N.: Spillback congestion in dynamic traffic assignment: a macroscopic flow model with time varying bottlenecks. Transp. Res. B 41, 1114–1138 (2007)

    Article  Google Scholar 

  96. Bliemer, M.J.: Dynamic queuing and spillback in an analytical multiclass network loading model. Transp. Res. Rec. 2029, 14–21 (2007)

    Article  Google Scholar 

  97. Yuan, S.X., An, Y.S., Zhao, X., Fan, H.W.: Modelling and simulation of dynamic traffic flows at non-signalized T-intersections. In: Proceedings of the 2nd International Conference on Power Electronics and Intelligent Transportation Systems. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5406951 (2009). Accessed 16 May 2011

  98. Tolba, C., Lefebvre, D., Thomas, P., El Moudni, A.: Continuous and timed Petri nets for the macroscopic and microscopic traffic flow modelling. Simul. Model. Pract. Theory 13, 407–436 (2005)

    Article  Google Scholar 

  99. Liu, X., Dai, S.: Macroscopic models for interrupted traffic flow of signal controlled intersections. In: ISECS International Colloquium on Computing, Communication, Control and Management, pp. 78–81. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5268043 (2009). Accessed 15 May 2011

  100. Jin, W.L.: Continuous kinematic wave models of merging traffic flow. Transp. Res. B 44, 1084–1103 (2010)

    Article  Google Scholar 

  101. Flotterod, G., Rohde, J.: Operational macroscopic modelling of complex urban road intersections. Transp. Res. B 45, 903–922 (2011)

    Article  Google Scholar 

  102. Corthout, R., Flotterod, G., Viti, F., Tampere, C.M.J.: Non-unique flows in macroscopic first order intersection models. Transp. Res. B 46(3), 343–359 (2012)

    Article  Google Scholar 

  103. Tuerprasert, K., Aswakul, C.: Multiclass cell transmission model for heterogeneous mobility in general topology of road network. J. Intell. Transp. Syst. Technol. Plan. Oper. 14(2), 68–82 (2010)

    MATH  Google Scholar 

  104. Lo, H.K., Szeto, W.Y.: A cell-based dynamic traffic assignment model: formulation and properties. Math. Comput. Model. 35(7–8), 849–865 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Urban Development, Government of India, for sponsoring the Center of Excellence in Urban Transport at Indian Institute of Technology (IIT), Madras that enabled this research work. The second author also thanks the New Faculty Grant provided by IIT Madras that partially funded this research work. All findings and opinions in the paper are the authors and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranju Mohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, R., Ramadurai, G. State-of-the art of macroscopic traffic flow modelling. Int J Adv Eng Sci Appl Math 5, 158–176 (2013). https://doi.org/10.1007/s12572-013-0087-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-013-0087-1

Keywords

Navigation