Skip to main content
Log in

On modelling electromagnetomechanical interactions in deformable solids

  • Original Paper
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

We revisit the notion of electromagnetomechanical interactions in a general continuum, recalling first the microscopic approach in the manner of Lorentz, and then passing to a continuum via some average. The source terms thus obtained may be carried in a direct approach to the balance laws of continuum thermomechanics. A second approach consists in exploiting a generalized form of the principle of virtual power. Finally, using a variational principle of the Hamiltonian-Lagrangian form is also mentioned, although necessarily limited to nondissipative processes but presenting also some advantages (in computations, studies of stability). The common features and contrasted ones between these approaches are emphasized. It is believed that this paves the way for further modelling of this type of complex continua while accounting for the most recent works in the field as well as the author’s past works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maxwell J. C., (1873) A Treatise on Electricity and Magnetism, Oxford, Reprint Dover, New York (1954)

    Google Scholar 

  2. Heaviside O., (1892) Electrical papers (2 volumes, collected works), The Electrician, Macmilan, London, Reprint, Chelsea (1970)

    Google Scholar 

  3. Truesdell C.A. and Toupin R.A., The Classical Field theory, Handbuch der Physik, Vol. III/1, Ed. S. Flügge, Springer Verlag, Berlin (1960)

    Google Scholar 

  4. Mindlin R.D., Elasticity, piezoelectricity and crystal lattice dynamics, J. Elasticity, 2, 217–282 (1972)

    Article  Google Scholar 

  5. Eringen A.C., Mechanics of Continua (revised and enlarged edition; see new Chapter 10), Krieger, New York (1980)

    Google Scholar 

  6. Brown W.F., Magnetoelastic interactions, Springer-Verlag, New York (1966)

    Google Scholar 

  7. Tiersten H.F., A development of the equations of electromagnetism in material continua, Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  8. Nelson D.F., Electric, optic and acoustic interactions in dielectrics, J. Wiley-Interscience, New York (1979)

  9. Maugin G.A. and Eringen A.C., On the equations of the electrodynamics of deformable bodies of finite extent, J. Mécanique (Paris), 16, 1–47 (1977)

    MathSciNet  Google Scholar 

  10. Eringen A.C. and Maugin G.A., Electrodynamics of Continua, Vol. I and II, Springer-Verlag, New York (1990)

    Google Scholar 

  11. Maugin G.A., Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  12. Lorentz H.A., (1900) Theory of Electrons, Reprint, Dover, New York (1952)

    Google Scholar 

  13. De Groot S.R. and Suttorp L.G., Foundations of electrodynamics, North-Holland, Amsterdam (1972)

    Google Scholar 

  14. Maugin G.A., Thermodynamics of Nonlinear Dissipative Phenomena, World Scientific, Singapore (1999)

    Google Scholar 

  15. Kovetz A., Electromagnetic Theory, Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  16. Ericksen J.L., On formulating and assessing continuum theories of electromagnetic fields in elastic materials, J. Elasticity, 87, 95–108 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ericksen J.L., Magnetizable and polarizable elastic materials, Meth. Mech. Solids, 13, 38–54 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Steigmann D.J., Equilibrium theory for magnetoelastomers and magnetoelastic membranes, Int. J. Non-linear Mech., 39, 1193–1216 (2004)

    Article  MATH  Google Scholar 

  19. Dorfmann A. and Ogden R.W., Nonlinear electroelasticity, Acta Mechanica, 174, 167–183 (2005)

    Article  MATH  Google Scholar 

  20. Dorfmann A. and Ogden R.W., Nonlinear electroelastic deformations, J. Elasticity, 88, DOI: 10:2007/s10659-005-9028-y (2006)

  21. Dorfmann A. and Ogden R.W., Nonlinear magnetoelastic deformations of elastomers, Acta Mechanica, 167, 13–28 (2003)

    Article  Google Scholar 

  22. Dorfmann A. and Ogden R.W., Nonlinear magnetoelastic deformations, Quart. J. Mech. Appl. Math., 57, 599–622 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kankanala S.V. and Triantafyllidis N., Magnetoelastic buckling of rectangular block in plane strain, J. Mech. Phys. Solids, 56, 1147–1169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ottenio M., Destrade M. and Ogden R.W., Incremental magnetoelastic deformations with application to surface instability, J. Elasticity, 90, 19–42 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Livens G.H., The theory of electricity, 2nd Edition, Cambridge University Press, London (1962)

    Google Scholar 

  26. Dixon R.C. and Eringen A.C., A dynamical theory of polar elastic dielectrics I, II, Int. J. Engng. Sci., 3, 359–377, 379–398 (1964)

    Article  Google Scholar 

  27. Collet B. and Maugin G.A., On the electrodynamics of continua with interactions (in French), C. R. Acad. Sci. Paris, 279B, 379–382 (1974)

    MathSciNet  Google Scholar 

  28. Maugin G.A., Material inhomogeneities in elasticity, Chapman & Hall, London (1993)

    MATH  Google Scholar 

  29. Trimarco C. and Maugin G.A.,Material mechanics of electromagnetic solids, in: Configurational Mechanics of Materials, (Eds.) Kienzler R. and Maugin G.A., pp. 129–171, Springer, Wien (2001)

    Google Scholar 

  30. Maugin G.A., On the foundations of the electrodynamics of deformable media with interactions, Lett. Appl. Engng. Sci., 4, 3–17 (1976)

    Google Scholar 

  31. Maugin G.A., The principle of virtual power in continuum mechanics. Application to coupled fields, Acta Mechanica, 35, 1–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Toupin R.A., The elastic dielectric, J. Rat. Mech. Anal., 5, 849–916 (1956)

    MathSciNet  Google Scholar 

  33. Tiersten H.F., Coupled magnetomechanical equations for magnetically saturated insulators, J. Math. Phys., 5, 1298–1318 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  34. Daher N. and Maugin G.A., Virtual Power and Thermodynamics for Electromagnetic Continua with Interfaces, J. Math. Phys., 27, 3022–3035 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  35. Daher N. and Maugin G.A., The Method of Virtual Power in Continuum Mechanics Application to Media Presenting Singular Surfaces and Interfaces, Acta Mechanica, 60, 217–240 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Daher N. and Maugin G.A., Nonlinear Electroacoustic Equations in Semi-conductors with Interfaces (Relation Between the Macroscopic and Quasi-microscopic Descriptions), Int. J. Engng. Sci., 26, 37–58 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rajagopal R.K. and Ruzicka M., Mathematical modelling of electrorheological materials, Continuum Mech. & Thermodyn., 13, 59–78 (2001)

    Article  MATH  Google Scholar 

  38. Drouot R. and Racineux G., A continuum modelling for the reversible behavior of electrorheological media, Intern. J. Appl. Electromagn. Mech., 22, 177–187 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard A. Maugin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maugin, G.A. On modelling electromagnetomechanical interactions in deformable solids. Int J Adv Eng Sci Appl Math 1, 25–32 (2009). https://doi.org/10.1007/s12572-009-0002-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-009-0002-y

Keywords

Navigation