Skip to main content

Advertisement

Log in

Converting ‘trade-offs’ to ‘trade-ons’ for greatly enhanced food security in Africa: multiple environmental, economic and social benefits from ‘socially modified crops’

  • Review
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

To address the issues of food insecurity within the context of land degradation, extreme poverty and social deprivation, this review seeks first to understand the main constraints to food production on smallholder farms in Africa. It then proposes a highly-adaptable, yet generic, 3-step solution aimed at reversing the downward spiral which traps subsistence farmers in hunger and poverty. This has been found to be effective in greatly increasing the yields of staple food crops and reducing the ‘yield gap’. This solution includes the restoration of soil fertility and ecological functions, as well as the cultivation, domestication and commercialization of traditionally-important, highly nutritious, indigenous food products for income generation and business development. A participatory approach involving capacity building at the community-level, leads to the development of ‘socially modified crops’ which deliver multiple environmental, social and economic benefits, suggesting that increased agricultural production does not have to be detrimental to biodiversity, to agroecological function, and/or to climate change. These are outcomes unattainable by attempting to raise crop yields using conventional crop breeding or genetic modification. Likewise, the livelihoods of smallholder farmers can be released from the constraints creating spatial trade-offs between subsistence agriculture and (i) international policies and (ii) globalized trade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbiw, D. (1990). Useful Plants of Ghana (p. 337). London and Royal Botanic Gardens, Kew: Intermediate Technology Publications.

  • Asaah, E. K., Tchoundjeu, Z., Leakey, R. R. B., et al. (2011). Trees, agroforestry and multifunctional agriculture in Cameroon. International Journal of Agricultural Sustainability, 9, 110–119.

    Article  Google Scholar 

  • Atta-Krah, K., Kindt, R., Skilton, J. N., et al. (2004). Managing biological and genetic diversity in tropical agroforestry. Agroforestry Systems, 61, 183–194.

    Article  Google Scholar 

  • Badgley, C., Moghtader, J., Quintero, E., et al. (2006). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22, 86–108.

    Article  Google Scholar 

  • Bailey, I., & Buck, L. E. (2016). Managing for resilience: a landscape framework for food and livelihood security and ecosystem services. Food Security, 8, 477–490.

    Article  Google Scholar 

  • Baxter, J. (2017). Seven Grains of Paradise: A Culinary Journey in Africa (p. 285). Nova Scotia: Pottersfield Press.

    Google Scholar 

  • Bennett, E. M., Cramer, W., Begossi, A., et al. (2015). Linking biodiversity, ecosystem services and human wellbeing: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 14, 76–85.

    Article  Google Scholar 

  • Borlaug, N. (1970). Speech at investiture as Nobel Peace Laureate. Oslo: The Nobel Foundation.

  • Comprehensive Assessment of Water Management in Agriculture. (2007). In Molden, D. (Ed.), Water for Food: Water for Life (p. 645). London: Earthscan.

  • Cribb, J. (2010). The Coming Famine: The Global Food Crisis and What We Can Do To Avoid It (p. 248). Los Angeles: University of California Press.

    Google Scholar 

  • Cunningham, A. B. (2001). Applied Ethnobotany: People, Wild Plant Use and Conservation (p. 300). London: Earthscan.

    Google Scholar 

  • de la Mora, A., Livingston, G., & Philpott, S. M. (2008). Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica, 40, 742–746.

    Article  Google Scholar 

  • de Smedt, S., Alaerts, K., Kouyaté, A. M., et al. (2011). Phenotypic variation of baobab (Adansonia digitata L.) fruit traits in Mali. Agroforestry Systems, 83, 87–97.

    Article  Google Scholar 

  • Degrande, A., Franzel, S., Yeptiep, Y. S., et al. (2012). Effectiveness of grassroots organisations in the dissemination of agroforestry innovations. In M. L. Kaonga (Ed.), Agroforestry for Biodiversity and Ecosystem Services Science and Practice (pp. 141–164). London: Elsevier.

    Google Scholar 

  • Degrande, A., Siohdjie Yeptiep, Y., Franzel, S., et al. (2014). Disseminating agroforestry innovations in Cameroon: are relay organisations effective? In B. Van Lauwe, P. Van Asten, & G. Blomme (Eds.), Agro-ecological Intensification of Agricultural Systems in the African Highlands (pp. 221–230). New York: Routledge.

    Google Scholar 

  • Degrande, A., Tchoundjeu, Z., Kwidja, A., et al. (2015). Rural Resource Centres: A Community Approach to Extension. Note 10. In: GFRAS Good Practice Notes for Extension and Advisory Services. GFRAS: Lindau.

  • Deininger, K., & Castagnini, R. (2006). Incidence and impact of land conflict in Uganda. Journal of Economic Behavior and Organization., 60, 321–345.

    Article  Google Scholar 

  • Diofasi, A., & Birdsall, N. (2016). The World Bank’s Poverty Statistics Lack Median Income Data, So We Filled in the Gap Ourselves. Centre for Global Development, Blog and Dataset.

  • Estrada-Carmona, N., Hart, A. K., DeClerck, F. A. J., et al. (2014). Integrated landscape management for agriculture, rural livelihoods and ecosystem conservation: an assessment of experience from Latin America and the Caribbean. Landscape and Urban Planning, 129, 1–11.

    Article  Google Scholar 

  • Everson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution 1960-2000. Science, 300(5620), 758–762.

    Article  Google Scholar 

  • FAO. (1995). Minimizing the trade-offs between the environment and agricultural development. In N. Alexandratos (Ed.), World Agriculture: Towards 2010. An FAO Study (p. 12). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Foundjem-Tita, D., Tchoundjeu, Z., Speelman, S., et al. (2012). Policy and legal frameworks governing trees: incentives or disincentives for smallholder tree planting decisions in Cameroon? Small-scale Forestry, 12, 489–505.

    Article  Google Scholar 

  • Franzel, S., Akinnifesi, F. K., & Ham, C. (2008). Setting priorities among indigenous fruit tree species in Africa: examples from southern, eastern and western Africa regions. In F. K. Akinnifesi, R. R. B. Leakey, O. C. Ajayi, et al. (Eds.), Indigenous Fruit Trees in the Tropics: Domestication (pp. 1–27). Wallingford: Utilization and Commercialization. CAB International.

    Google Scholar 

  • Franzel, S., Degrande, A., Kiptot, E., et al. (2015). Farmer-to-Farmer Extension. Note 7, GFRAS Good Practice Note for Extension and Advisory Services. Lindau: Global Forum for Rural Advisory Services.

    Google Scholar 

  • Franzel, S., Denning, G. L., Lilisøe, J.-P., & Mercado Jr., A. R. (2004). Scaling up the impact of agroforestry: Lessons from three sites in Africa and Asia. Agroforestry Systems, 61, 329–344.

    Article  Google Scholar 

  • Franzel, S., Jaenicke, H., & Janssen, W. (1996). Choosing the Right Trees: Setting Priorities for Multipurpose Tree Improvement. ISNAR Research Report 8. International Service for National Agricultural Research, The Hague, p 87.

  • Gallina, S., Mandujano, S., & Gonzalez-Romero, A. (1996). Conservation of mammalian biodiversity in coffee plantations of Central Veracruz, Mexico. Agroforestry Systems, 33, 13–27.

    Article  Google Scholar 

  • Gallup (2014). Worldwide median income. Gallup Worldwide Research Data 2005–2016, Gallup Inc.

  • Garbach, K., Milder, J. C., Montenegro, M., et al. (2014). Biodiversity and ecosystem services in agroecosystems. In N. van Alfen et al. (Eds.), Encyclopedia of Agriculture and Food Systems (Vol. 2, pp. 21–40). San Diego: Elsevier Publishers.

    Chapter  Google Scholar 

  • Garnett, T., Appleby, M. C., Balmford, A., et al. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341, 33–34.

    Article  PubMed  CAS  Google Scholar 

  • Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Sileshi, W. G., Mowo, J. G., Kalinganire, A., Larwanou, M., & Bayala, J. (2010). Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food Security, 2, 197–214.

    Article  Google Scholar 

  • Gemmell, N., Lloyd, T., & Mathew, M. (2000). Agricultural growth and intersectoral linkages in a developing economy. Journal of Agricultural Economics, 51(3), 353–370.

    Article  Google Scholar 

  • Global Environmental Outlook. (2007). Global Environmental Outlook 4: Past, Present and Future Perspectives (p. 572). Nairobi: UNEP.

    Google Scholar 

  • Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Society B, 369, 20120273. https://doi.org/10.1098/rstb.2012.0273.

    Article  Google Scholar 

  • Greenberg, R. (2000). The conservation value for birds of planted shade cacao plantations in Mexico. Animal Conservation, 3, 105–112.

    Article  Google Scholar 

  • Greenberg, R., Bichier, R., & Sterling, J. (1997). Bird populations in rustic and planted shade coffee plantations of Eastern Chiapas, Mexico. Biotropica, 29, 501–514.

    Article  Google Scholar 

  • Gu, H., & Subramanian, S. M. (2012). Socio-ecological production landscapes: Relevance to the Green Economy Agenda. UN University, Institute of Advanced Studies Policy Report.

  • Gyau, A., Ngum Faith, A., Foundjem-Tita, D., et al. (2014). Small-holder farmers’ access and rights to land of Njombe´ in the Littoral region of Cameroon. Afrika Focus, 27, 23–39.

    Google Scholar 

  • Holt-Giménez, E., & Altieri, M. A. (2013). Agroecology, food sovereignty and the new Green Revolution. Agroecology and Sustainable Food Systems, 37, 90–102.

    Article  Google Scholar 

  • International Assessment of Agricultural Science and Technology for Development. (2009). In B. D. McIntyre, H. R. Herren, J. Wakhungu, R. T. Watson (Eds.), Agriculture at a crossroads: International assessment of agricultural science and technology for development global report (p. 590). Washington, DC: Island Press.

  • Jama, B., Kimani, D., Harawa, R., et al. (2017). Maize yield response, nitrogen use efficiency and financial returns on smallholder farms in southern Africa. Food Security, 9, 577–593.

    Article  Google Scholar 

  • Jamnadass, R., Dawson, I. K., Anegbeh, P., et al. (2010). Allanblackia, a new tree crop in Africa for the global food industry: market development, smallholder cultivation and biodiversity management. Forests Trees Livelihoods, 19, 251–268.

    Article  Google Scholar 

  • Jamnadass, R., Langford, K., Anjarwalla, P., et al. (2014). Public-Private partnerships in agroforestry. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 4, pp. 544–564). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Kangmennaeng, J., Kerr, R. B., Lupafya, E., et al. (2017). Impact of participatory agroecological development programme on household wealth and food security in Malawi. Food Security, 9, 561–576.

    Article  Google Scholar 

  • Keding, G. B., Kehlenbeck, K., Kennedy, G., et al. (2017). Fruit production and consumption: practices, preferences and attitudes of women in western rural Kenya. Food Security, 9, 453–469.

    Article  Google Scholar 

  • Khan, Z. R., Midega, C. A. O., Hassanali, A., et al. (2006). Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf desmodium, Desmodium intortum. International Journal of Pest Management, 52, 297–302.

    Article  Google Scholar 

  • Kiers, E. T., Leakey, R. R. B., Izac, A.-M., et al. (2008). Agriculture at a crossroads. Science, 320, 320–321.

    Article  PubMed  CAS  Google Scholar 

  • Kiptot, E., & Franzel, S. (2015). Farmer-to-farmer extension: opportunities for enhancing performance of volunteer farmer trainers in Kenya. Development Practitioner, 25, 503–517.

    Article  Google Scholar 

  • Klapwijk, C. J., van Wijk, M. T., Rosenstock, T. S., et al. (2016). Analysis of trade-offs in agricultural systems: current status and way forward. Current Opinion in Environmental Sustainability, 6, 110–115.

    Article  Google Scholar 

  • Lavelle, P., Moreira, F., & Spain, A. (2014). Biodiversity: Conserving biodiversity in agroecosystems. In N. van Alfen et al. (Eds.), Encyclopedia of Agriculture and Food Systems (Vol. 2, pp. 41–60). San Diego: Elsevier Publishers.

    Chapter  Google Scholar 

  • Le Mare, A. (2008). The impact of Fair Trade on social and economic development: a review of the literature. Geography Compass, 2, 1922–1942.

    Article  Google Scholar 

  • Leakey, R. R. B. (1999). Potential for novel food products from agroforestry trees. Food Chemistry, 64, 1–14.

    Article  Google Scholar 

  • Leakey, R. R. B. (2001a). Win:Win landuse strategies for Africa: 1. Building on experience with agroforests in Asia and Latin America. International Forestry Review, 3, 1–10.

    Google Scholar 

  • Leakey, R. R. B. (2001b). Win:Win landuse strategies for Africa: 2. capturing economic and environmental benefits with multistrata agroforests. International Forestry Review, 3, 11–18.

    Google Scholar 

  • Leakey, R. R. B. (2010). Agroforestry: a delivery mechanism for multi-functional agriculture. In L. R. Kellimore (Ed.), Handbook on agroforestry: Management practices and environmental impact. Environmental science, engineering and technology series (pp. 461–471). New York: Nova Science Publishers.

    Google Scholar 

  • Leakey, R. R. B. (2012a). Living with the Trees of Life–Towards the Transformation of Tropical Agriculture (p. 200). Wallingford: CABI.

    Book  Google Scholar 

  • Leakey, R. R. B. (2012b). Non-Timber Forest Products – a misnomer? Guest Editorial. Journal of Tropical Forest Science, 24, 145–146.

    Google Scholar 

  • Leakey, R. R. B. (2013). Addressing the causes of land degradation, food/nutritional insecurity and poverty: A new approach to agricultural intensification in the tropics and sub-tropics. In U. Hoffman (Ed.), UNCTAD Trade and Environment Review 2012. Geneva: UNCTAD.

    Google Scholar 

  • Leakey, R. R. B. (2014a). The role of trees in agroecology and sustainable agriculture in the tropics. Annual Review of Phytopathology, 52, 113–133.

    Article  PubMed  CAS  Google Scholar 

  • Leakey, R. R. B. (2014b). Twelve principles for better food and more food from mature perennial agroecosystems. In: Perennial Crops for Food Security, 282–306, Proceedings of FAO Expert Workshop, Rome, Italy, 28–30 August 2013. Rome: FAO.

  • Leakey, R. R. B. (2014c). Agroforestry: Participatory Domestication of Trees. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 1, pp. 253–269). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Leakey, R. R. B. (2014d). Plant cloning: Macro-propagation. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 4, pp. 349–359). San Diego: Elsevier Publishers.

    Chapter  Google Scholar 

  • Leakey, R. R. B. (2014e). An African solution to the problems of African agriculture. In Sustainable Natural Resources Management in Africa’s Urban Food and Nutrition Equation. Nature & Faune 28(2), 17–20, FAO Regional Office for Africa.

  • Leakey, R. R. B. (2017a). Multifunctional Agriculture: Achieving Sustainable Development in Africa (p. 502). San Diego: Academic Press.

    Google Scholar 

  • Leakey, R. R. B. (2017b). Socially modified organisms in multifunctional agriculture – addressing the needs of smallholder farmers in Africa. Scientific Pages of Crop Science, 1, 20–29.

    Google Scholar 

  • Leakey, R.R.B. (2017c). Trees: a call to policy makers to meet farmers’ needs by combining environmental services with marketable products: an update. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 369–371). San Diego: Elsevier.

  • Leakey, R. R. B. (2017d). Trees: meeting the social, economic and environmental needs of poor farmers—scoring sustainable development goals: an update. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 417–420). San Diego: Elsevier.

  • Leakey, R.R.B. (2017e). Trees: Meeting the social, economic and environmental needs of poor farmers – Scoring sustainable development goals: an update. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 417–420). San Diego: Elsevier.

  • Leakey, R. R. B., & Akinnifesi, F. K. (2008). Towards a domestication strategy for indigenous fruit trees in the tropics. In F. K. Akinnifesi, R. R. B. Leakey, O. C. Ajayi, et al. (Eds.), Indigenous Fruit Trees in the Tropics: Domestication, Utilization and Commercialization (pp. 28–49). Wallingford: CAB International.

    Google Scholar 

  • Leakey, R. R. B., & Asaah, E. K. (2013). Underutilised species as the backbone of multifunctional agriculture − The next wave of crop domestication. Acta Horticulturae, 979, 293–310.

    Article  Google Scholar 

  • Leakey, R. R. B., Fondoun, J.-M., Atangana, A., et al. (2000). Quantitative descriptors of variation in the fruits and seeds of Irvingia gabonensis. Agroforestry Systems, 50, 47–58.

    Article  Google Scholar 

  • Leakey, R. R. B., & Izac, A.-M. N. (1996). Linkages between domestication and commercialization of non-timber forest products: implications for agroforestry. In R. R. B. Leakey, A. B. Temu, M. Melnyk, & P. Vantomme (Eds.), Domestication and Commercialization of Non-timber Forest Products (pp. 1–7). Rome: Non-Wood Forest Products No. 9. FAO.

    Google Scholar 

  • Leakey, R. R. B., Kranjac-Berisavljevic, G., Caron, P., et al. (2009). Impacts of AKST on development and sustainability goals. In B. D. McIntyre, H. Herren, J. Wakhungu, & R. Watson (Eds.), International Assessment of Agricultural Science and Technology for Development: Global Report (pp. 145–253). New York: Island Press.

    Google Scholar 

  • Leakey, R. R. B., Mesén, J. F., Tchoundjeu, Z., et al. (1990). Low-technology techniques for the vegetative propagation of tropical trees. Commonwealth Forestry Review, 69, 247–257.

    Google Scholar 

  • Leakey, R. R. B., & Newton, A. C. (1994). Tropical Trees: Potential for Domestication, Rebuilding Forest Resources (p. 284). London: HMSO.

    Google Scholar 

  • Leakey, R. R. B., & Page, T. (2006). The ‘ideotype concept’ and its application to the selection of ‘AFTP’ cultivars. Forests, Trees and Livelihoods, 16, 5–16.

    Article  Google Scholar 

  • Leakey, R. R. B., & Prabhu, R. (2017). Towards multifunctional agriculture – an African initiative. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 393–414). San Diego: Academic Press.

  • Leakey, R. R. B., Schreckenberg, K., & Tchoundjeu, Z. (2003). The participatory domestication of West African indigenous fruits. International Forestry Review, 5, 338–347.

    Article  Google Scholar 

  • Leakey, R. R. B., & Simons, A. J. (1997). The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. Agroforestry Systems, 38, 165–176.

    Article  Google Scholar 

  • Leakey, R. R. B., & Tomich, T. P. (1999). Domestication of tropical trees: from biology to economics and policy. In L. E. Buck, J. P. Lassoie, & E. C. M. Fernandes (Eds.), Agroforestry in Sustainable Ecosystems (pp. 319–338). New York: CRC Press/Lewis Publishers.

    Google Scholar 

  • Leakey, R. R. B., & van Damme, P. (2014). The role of tree domestication in value chain development. Forests, Trees and Livelihoods, 23, 116–126.

    Article  Google Scholar 

  • Leakey, R. R. B., Weber, J. C., Page, T., et al. (2012). Tree domestication in agroforestry: progress in the second decade. In P. K. Nair & D. Garrity (Eds.), Agroforestry–The Future of Global Land Use (pp. 145–173). USA: Springer.

    Chapter  Google Scholar 

  • Lilja, N., & Dixon, J. (2008). Responding to the challenges of impact assessment of participatory research and gender analysis. Experimental Agriculture, 44, 3–19.

    Google Scholar 

  • Lombard, C., & Leakey, R. R. B. (2010). Protecting the rights of farmers and communities while securing long term market access for producers of non-timber forest products: Experience in southern Africa. Forests, Trees and Livelihoods, 19, 235–249.

    Article  Google Scholar 

  • Maathai, W. (2009). The Challenge for Africa. New York: Random House Inc..

    Google Scholar 

  • Maes, J., Paracchini, M. L., Zulian, G., et al. (2012). Synergies and trade-offs between ecosystem service supply, biodiversity and habitat conservation status in Europe. Biological Conservation, 155, 1–12.

    Article  Google Scholar 

  • Mafongoya, P. L., Kuntashula, E., & Sileshi, G. (2006). Managing soil fertility and nutrient cycles through fertilizer trees in southern Africa. In N. Uphoff, A. S. Ball, E. Fernandes, et al. (Eds.), Biological Approaches to Sustainable Soil Systems (pp. 273–289). New York: CRC Press.

    Chapter  Google Scholar 

  • Mbosso, C., Degrande, A., Villamor, G. B., et al. (2015). Factors affecting the adoption of agricultural innovation: the case of Ricinodendron heudelotii kernel extraction machine in southern Cameroon. Agroforestry Systems, 89, 799–811.

    Article  Google Scholar 

  • Meadows, D. H., Meadows, G., Randers, J., & Behrens III, W. W. (1972). The Limits to Growth. New York: Universe Books.

    Google Scholar 

  • Michon, G., & de Foresta, H. (1995). The Indonesian agroforest model. Forest resource management and biodiversity conservation. In P. Halliday & D. A. Gilmour (Eds.), Conserving Biodiversity Outside Protected Areas: The Role of Traditional Agroecosystems (pp. 90–106). Gland: IUCN.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-Being. Washington: Island Press.

    Google Scholar 

  • Moguel, P., & Toledo, V. M. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13, 11–21.

    Article  Google Scholar 

  • Mollee, E., Pouliot, M., & McDonald, M. A. (2017). Into the urban wild: Collection of wild urban plants for food and medicine in Kampala. Uganda, Land Use Policy, 63, 67–77.

    Article  Google Scholar 

  • Muñoz, D., Estrada, A., Naranjo, E., et al. (2006). Foraging ecology of howler monkeys in a cacao (Theobroma cacao) plantation in Comalcalco, México. American Journal of Primatology, 68, 127–142.

    Article  PubMed  Google Scholar 

  • Ndungu, J. N., & Boland, D. J. (1994). Sesbania sesban collections in Southern Africa: developing a model for co-operation between a CGIAR Centre and NARS. Agroforestry Systems, 27, 129–143.

    Article  Google Scholar 

  • Nelson, E., Mendoza, G., Regetz, J., et al. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7, 4–11.

    Article  Google Scholar 

  • Nestel, D., Dickschen, F., & Altieri, M. A. (1993). Diversity patterns of soil Coleoptera in Mexican shaded and unshaded coffee agroecosystems: an indication of habitat perturbation. Biodiversity and Conservation, 2, 70–78.

    Article  Google Scholar 

  • Ngadze, R. T., Verkerk, R., Nyanga, L. K., et al. (2017). Improvement of traditional processing of local monkey orange (Strychnos spp.) fruits to enhance nutrition security in Zimbabwe. Food Security, 9, 621–633.

    Article  Google Scholar 

  • Ngome, P. I. T. (2017). The contribution of fruits from trees to improve household food insecurity in the context of deforestation in Cameroon. PhD thesis, Rhodes University, Grahamstown, South Africa.

  • Ngome, P. I. T., Shackleton, C., Degrande, A., et al. (2017). Addressing constraints in promoting wild edible plants’ utilization in household nutrition: case of the Congo Basin forest area. Agriculture and Food Security, 6, 20. https://doi.org/10.1186/s40066-017-0097-5.

    Article  Google Scholar 

  • Palm, C. A., Vosti, S. A., Sanchez, P. A., et al. (2005). Slash-and-Burn Agriculture: The Search for Alternatives (p. 463). New York: Columbia University Press.

    Google Scholar 

  • Pardee, G. L., & Philpott, S. M. (2011). Cascading indirect effects in a coffee agroecosystem: effects of parasitic phorid flies on ants and the coffee berry borer in a high-shade and low-shade habitat. Environmental Entomolology, 40, 581–588.

    Article  Google Scholar 

  • Pauku, R. L., Lowe, A., & Leakey, R. R. B. (2010). Domestication of indigenous fruit and nut trees for agroforestry in the Solomon Islands. Forests, Trees and Livelihoods, 19, 269–287.

    Article  Google Scholar 

  • Peng, J., Wang, Y., Wu, J., et al. (2011). The contribution of landscape ecology to sustainable land use research. Environmental Development and Sustainability, 13, 953.

    Article  Google Scholar 

  • Perfecto, I., Rice, R., Greenberg, R., et al. (1996). Shade coffee: a disappearing refuge for biodiversity. Bioscience, 46, 598–608.

    Article  Google Scholar 

  • Perfecto, I., & Snelling, R. (1995). Biodiversity and the transformation of a tropical agroecosystem: ants in coffee plantations. Ecological Applications, 5, 1084–1097.

    Article  Google Scholar 

  • Perfecto, I., Vandermeer, J. H., Bautista, G. L., et al. (2004). Greater predation in shaded coffee farms: the role of resident neotropical birds. Ecology, 85, 2677–2681.

    Article  Google Scholar 

  • Perfecto, I., Vandermeer, J., Hanson, P., et al. (1997). Arthropod biodiversity loss and the transformation of a tropical agroecosystem. Biodiversity and Conservation, 6, 935–945.

    Article  Google Scholar 

  • Perfecto, I., Vandermeer, J., & Philpott, S. M. (2014). Complex ecological interactions in coffee agroecosystems. Annual Review of Ecology, Evolution and Systematics, 45, 137–158.

    Article  Google Scholar 

  • Phalan, B., Onial, M., Balmford, A., et al. (2011). Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 333, 1289–1291.

    Article  PubMed  CAS  Google Scholar 

  • Philpott, S. M., & Bichier, P. (2012). Effects of shade tree removal on birds in coffee agroecosystems in Chiapas, Mexico. Agriculture, Ecosystems and Environment, 149, 171–180.

    Article  Google Scholar 

  • Place, F., & Hazell, P. (1993). Productivity effects of indigenous land tenure systems in Sub-Saharan Africa. American Journal of Agricultural Economics, 75, 10–19.

    Article  Google Scholar 

  • Poppy, G. M., Chiotha, S., Eigenbrod, F., et al. (2014). Food security in a perfect storm: using the ecosystem services framework to increase understanding. Philosophical Transactions of the Royal Society, B., 369, 20120288.

    Article  CAS  Google Scholar 

  • Powell, B., Thilsted, S. H., Ickowitz, A., et al. (2015). Improving diets with wild and cultivated biodiversity from across the landscape. Food Security, 7, 535–554.

    Article  Google Scholar 

  • Power, A. G. (2010). Ecosystem services and agriculture: trade-offs and synergies. Philosophical Transactions of the Royal Society, B., 365, 2959–2971.

    Article  Google Scholar 

  • Pretty, J. (2006). Agroecological Approaches to Agricultural Development. Washington, DC: World Bank.

    Google Scholar 

  • Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114, 1571–1596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9, 5–24.

    Article  Google Scholar 

  • Raintree, J. B. (1987). The state of the art of agroforestry diagnosis and design. Agroforestry Systems, 5, 219–250.

    Article  Google Scholar 

  • Rosenstock, T. S., Mpanda, M., Kimaro, A., et al. (2015). Science to support climate-smart agricultural development: Concepts and results from the MICCA pilot projects in East Africa, Mitigation of Climate Change in Agriculture Series, 10, FAO Rome, p. 47.

  • Royal Society. (2009). Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. (Rep. 11/09 RS1608). London: Royal Society.

    Google Scholar 

  • Sanchez, P. A. (2002). Soil fertility and hunger in Africa. Science, 192, 2019–2020.

    Article  Google Scholar 

  • Santilli, J. (2015). Agroforestry and the Law: the impact of legal instruments on agroforestry systems. Final Report to World Agroforestry Centre. Nairobi, Kenya, p. 86.

  • Sayer, J., Sunderland, T., Ghazoul, J., et al. (2013). Ten principles for a landscape approach to reconciling agriculture, conservation and other competing land uses. Proceedings of the National Academy of Science, USA, 110, 8349–8356.

    Article  Google Scholar 

  • Schnorr, S. L., Candela, M., Rampelli, S., et al. (2014). Gut microbiome of the Hadza hunter-gatherers. Nature Communications, 5, 3654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreckenberg, K., Awono, A., Degrande, A., et al. (2006). Domesticating indigenous fruit trees as a contribution to poverty reduction. Forests, Trees and Livelihoods, 16, 35–51.

    Article  Google Scholar 

  • Schreckenberg, K., Degrande, A., Mbosso, C., et al. (2002). The social and economic importance of Dacryodes edulis (G.Don) H.J. Lam in southern Cameroon. Forests, Trees and Livelihoods, 12, 15–40.

    Article  Google Scholar 

  • Schroth, G., & do Socorro Souza da Mota, M. (2014). Agroforestry: Complex Multistrata Agriculture. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 1, pp. 195–207). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Schroth, G., Krauss, U., Gasparotto, L., et al. (2000). Pests and diseases in agroforestry systems of the humid tropics. Agroforestry Systems, 50, 199–241.

    Article  Google Scholar 

  • Sebastian, K. (Ed.). (2014). Atlas of African Agriculture Research and Development–Revealing Agriculture’s Place in Africa (p. 108). Washington DC: IFPRI.

    Google Scholar 

  • Shackleton, S., Shackleton, C., Wynberg, R., et al. (2009). Livelihood trade-offs in the commercialisation of multiple use NTFP: lessons from marula (Sclerocarya birrea subsp. caffra) in southern Africa. Chapter 11. In R. U. Shaanker, A. J. Hiremath, G. C. Joseph, & N. D. Rai (Eds.), Non-timber Forest Products: Conservation, Management and Policy in the Tropics (pp. 139–173). Bangalore: Ashoka Trust for Research in Ecology and Environment.

    Google Scholar 

  • Sileshi, G., Akinnifesi, F. K., Ajayi, O. C., et al. (2008). Meta-analysis of maize yield response to planted fallow and green manure legumes in sub-Saharan Africa. Plant and Soil, 307, 1–19.

    Article  CAS  Google Scholar 

  • Sileshi, G., Akinnifesi, F. K., Debusho, L. K., et al. (2010). Variation in maize yield gaps with nutrient inputs, soil type and climate across sub-saharan Africa. Field Crops Research, 116, 1–13.

    Article  Google Scholar 

  • Sileshi, G. W., Mafongoya, P., Akinnifesi, F. K., et al. (2014). Agroforestry: Fertilizer trees. In N. Van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 1, pp. 222–234). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Simons, A. J., & Leakey, R. R. B. (2004). Tree domestication in tropical agroforestry. Agroforestry Systems, 61, 167–181.

    Article  Google Scholar 

  • Takoutsing, B., Tchoundjeu, Z., Degrande, A., et al. (2014). Scaling-up sustainable land management practices through the concept of the rural resource centre: reconciling farmers’ interests with research agendas. International Journal of Agricultural Extension Education, 20, 463–483.

    Article  Google Scholar 

  • Tchoundjeu, Z., Asaah, E., Anegbeh, P. O., et al. (2006). Putting participatory domestication into practice in West and Central Africa. Forests, Trees and Livelihoods, 16, 53–70.

    Article  Google Scholar 

  • Tchoundjeu, Z., Degrande, A., Leakey, R. R. B., et al. (2010). Impact of participatory tree domestication on farmer livelihoods in west and central Africa. Forests, Trees and Livelihoods, 19, 219–234.

    Article  Google Scholar 

  • Tchoundjeu, Z., Kengue, J., & Leakey, R. R. B. (2002). Domestication of Dacryodes edulis: state-of-the art. Forests, Trees and Livelihoods, 12, 3–14.

    Article  Google Scholar 

  • Tiffin, R., & Irz, X. (2006). Is agriculture the engine of growth? Agricultural Economics, 35, 79–89.

    Article  Google Scholar 

  • Todou, G., Doudou, K., & Vroumsia, T. (2017). Diversity and local transformation of indigenous edible fruits in Sahelian domain of Cameroon. Journal of Animal and Plant Sciences, 26, 5289–5300.

    Google Scholar 

  • Torquebiau, E., Cholet, N., Ferguson, W., et al. (2013). Designing an index to reveal the potential of multipurpose landscapes in Southern Africa. Land, 2, 705–725.

    Article  Google Scholar 

  • UNCCD. (2017). Global Land Outlook (1st ed.p. 336). Bonn: UNCCD.

    Google Scholar 

  • van Ittersum, M., van Bussela, L. G. J., Wolfa, J., et al. (2016). Can Sub-Saharan Africa feed itself? Proceedings of the National Academy of Science, USA, 113, 14964–14969.

    Article  CAS  Google Scholar 

  • van Noordwijk, M., Hoang, M. H., Neufeldt, H., et al. (2011). How trees and people can co-adapt to climate change: reducing vulnerability through multifunctional agroforestry landscapes (p. 131). Nairobi: World Agroforestry Centre.

    Google Scholar 

  • van Wijk, C. J., Rosenstock, T. S., van Asten, P. J. A., et al. (2016). Methods for Environment: Productivity Trade-Off Analysis in Agricultural Systems. In T. S. Rosenstock, M. C. Rufuino, K. Butterbach-Bahl, E. Wollenberg, & M. Richards (Eds.), Methods for Measuring Greenhouse Gas Balance and Evaluating Mitigation Options in Smallholder Agriculture (pp. 189–198). New York: Springer. https://doi.org/10.1007/978_3_319_29794_1_10.

    Chapter  Google Scholar 

  • Villamor, G. B., van Noordwijk, M., Leimona, B., et al. (2017). Tradeoffs. In S. Namirembe, B. Leimona, M. van Noordwijk, & P. Minang (Eds.), Co-investment in Ecosystem Services: lessons from payment and incentive schemes. Nairobi: World Agroforestry Centre.

    Google Scholar 

  • Waruhiu, A. N., Kengue, J., Atangana, A. R., et al. (2004). Domestication of Dacryodes edulis: 2. Phenotypic variation of fruit traits in 200 trees from four populations in the humid lowlands of Cameroon. Food, Agriculture and the Environment, 2, 340–346.

    Google Scholar 

  • Welch, R. M., Combs Jr., G. F., & Duxbury, J. M. (1997). Toward a "greener" revolution. Issues in Science and Technology, 14, 50–58.

    Google Scholar 

  • World Commission on Environment and Development. (1987). From One Earth to One World: An Overview. Oxford: Oxford University Press.

    Google Scholar 

  • World Economic Forum (2017). Shaping the Future of Global Food Systems: A Scenarios Analysis. A Report by the World Economic Forum’s System Initiative, World Economic Forum, Geneva, Switzerland, p. 28.

  • Wynberg, R., Cribbins, J., Leakey, R. R. B., et al. (2002). A summary of knowledge on marula (Sclerocarya birrea subsp. caffra) with emphasis on its importance as a non-timber forest product in South and southern Africa. 2. Commercial use, tenure and policy, domestication, intellectual property rights and benefit-sharing. Southern African Forestry Journal, 196, 67–77.

    Article  Google Scholar 

  • Zomer, R. J., Neufeldt, H., Xu, J., et al. (2016). Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Nature Scientific Reports, 6, 29987. https://doi.org/10.1038/srep29987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger R. B. Leakey.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leakey, R.R.B. Converting ‘trade-offs’ to ‘trade-ons’ for greatly enhanced food security in Africa: multiple environmental, economic and social benefits from ‘socially modified crops’. Food Sec. 10, 505–524 (2018). https://doi.org/10.1007/s12571-018-0796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-018-0796-1

Keywords

Navigation