Skip to main content

Advertisement

Log in

Spatial-temporal changes of cropland and climate potential productivity in northern China during 1990–2010

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Large areas of cropland expansion have been reported in northern China. The sustainable use of cropland may be greatly affected by climate and is vulnerable to climatic changes, particularly in northern China. Here, we investigated climate change during 1961–2010 and the spatial and temporal characteristics of climate resources in newly converted cropland during 1990–2010 across northern China. Significant climate warming occurred in the last 50 years concurrently with relative stable precipitation rates, which provided a favorable climatic background for expanding the extent of cropland. During 1990–2010, the major cropland expansion had shifted from the humid northeast of China with good natural conditions to the arid northwest with fragile environmental conditions. In the newly converted cropland areas, temperatures increased significantly with small fluctuations; the average precipitation decreased considerably from 422.40 to 257.97 mm, with high and increasing inter-annual and seasonal variability. Water shortages became the most important climatic factor, limiting sustainable use of newly converted cropland. The average climate potential productivity of newly converted cropland decreased considerably from 672.41 to 440.40 t/km2, indicating a substantial decline in the quality of newly converted cropland. Understanding the spatial and temporal changes in climatic resources is critical to coordinating cropland expansion and sustainable land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams, B., White, A., & Lenton, T. M. (2004). An analysis of some diverse approaches to modelling terrestrial net primary productivity. Ecological Modelling, 177(3–4), 353–391.

    Article  CAS  Google Scholar 

  • Bakker, M. M., Hatna, E., Kuhlman, T., & Mucher, C. A. (2011). Changing environmental characteristics of European cropland. Agricultural Systems, 104(7), 522–532.

    Article  Google Scholar 

  • Barrett, C. B. (2010). Measuring food insecurity. Science, 327(5967), 825–828.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. (2007). Rapid urbanization in China: A real challenge to soil protection and food security. Catena, 69(1), 1–15.

    Article  Google Scholar 

  • David, P. M. Z., Ramankutty, N., Barford, C. C., & Foley, J. A. (2007). From Miami to Madison: Investigating the relationship between climate and terrestrial net primary production. Global Biogeochemical Cycles. doi:10.1029/2006GB002705.

    Google Scholar 

  • Deng, X. P., Shan, L., Zhang, H. P., & Turner, N. C. (2006). Improving agricultural water use efficiency in and semiarid areas of China. Agricultural Water Management, 80(1–3), 23–40.

    Article  Google Scholar 

  • Dong, J. W., Liu, J. Y., Tao, F. L., Xu, X. L., & Wang, J. B. (2009). Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Research, 40(1), 37–48.

    Article  CAS  Google Scholar 

  • Dong, J. W., Liu, J. Y., & Shi, W. J. (2010). China's sloping land conversion program at the beginning of 21st century and its habitat suitability in typical region of Loess Plateau. Journal of Resources and Ecology, 1(1), 36–44.

    Google Scholar 

  • Fan, M. S., Shen, J. B., Yuan, L. X., Jiang, R. F., Chen, X. P., Davies, W. J., et al. (2012). Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 63(1), 13–24.

    Article  PubMed  CAS  Google Scholar 

  • FAO (2009). How to feed the world in 2050. FAO of the United Nations. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Fischer, G., Velthuizen, H. V., & Nachtergaele, F. (2000). Global agro-ecological zones assessment: methodology and results. Interim report. Laxenburg, Austria: International Institute for Systems Analysis (IIASA), and Rome: FAO.

  • Gao, Q., Ci, L., & Yu, M. (2002). Modeling wind and water erosion in northern China under climate and land use changes. Journal of Soil and Water Conservation, 57(1), 46–55.

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food eecurity: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  PubMed  CAS  Google Scholar 

  • Hallett, S. H., & Jones, R. J. A. (1993). Compilation of an accumulated temperature database for use in an environmental information system. Agricultural and Forest Meteorology, 63(1), 21–34.

    Article  Google Scholar 

  • He, X. B., Zhou, J., Zhang, X. B., & Tang, K. L. (2006). Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Regional Environmental Change, 6(1–2), 62–70.

    Article  Google Scholar 

  • Hutchinson, M. F. (2002) ANUspline, Version 4.2, user guide.

  • IGBP Secretariat. GLP (2005) Science Plan and Implementation Strategy. IGBP Report No. 53/IHDP Report No.19. Stockholm: 64pp.

  • IPCC. (2007a). Climate change 2007: impacts, adaptation and vulnerability. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • IPCC. (2007b). Climate Change 2007. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Khan, S., Hanjra, M. A., & Mu, J. X. (2009). Water management and crop production for food security in China: A review. Agricultural Water Management, 96(3), 349–360.

    Article  Google Scholar 

  • Li, Z., Liu, W. Z., Zhang, X. C., & Zheng, F. L. (2011). Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Climatic Change, 105(1–2), 223–242.

    Article  Google Scholar 

  • Lieth, H. (1973). Primary production: Terrestrial ecosystems. Human Ecology, 1(4), 303–332.

    Article  Google Scholar 

  • Liu, J. Y., Deng, X. Z., Liu, M. L., & Zhang, S. W. (2002). Study on the spatial patterns of land-use change and analysis of driving factors in northeastern China during 1990–2000. Chinese Geographical Sciences, 12(4), 299–308.

    Article  Google Scholar 

  • Liu, J. Y., Liu, M. L., Tian, H. Q., Zhuang, D. F., Zhang, Z. X., Zhang, W., et al. (2005a). Spatial and temporal patterns of China's cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sensing of Environment, 98(4), 442–456.

    Article  Google Scholar 

  • Liu, X. H., Wang, J. F., Liu, M. L., & Meng, B. (2005b). Spatial heterogeneity of the driving forces of cropland change in China. Science in China Series D-Earth Sciences, 48(12), 2231–2240.

    Article  Google Scholar 

  • Liu, J. Y., Zhang, Z. X., Xu, X. L., Kuang, W. H., Zhou, W. C., Zhang, S. W., et al. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4), 483–494.

    Article  Google Scholar 

  • Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters. doi:10.1088/1748-9326/2/1/014002.

    Google Scholar 

  • Lobell, D. B., Sibley, A., & Ortiz-Monasterio, J. I. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2(3), 186–189.

    Article  Google Scholar 

  • Moral, F. J. (2010). Comparison of different geostatistical approaches to map climate variables: application to precipitation. International Journal of Climatology, 30(4), 620–631.

    Google Scholar 

  • National Bureau of Statistics of China. (2011). China Statistical Yearbook. Beijing: China Statistics Press.

    Google Scholar 

  • Oliver, J. E. (1980). Monthly precipitation distribution: a comparative index. Professional Geographer, 32, 300–309.

    Article  Google Scholar 

  • Piao, S. L., Fang, J. Y., Zhou, L. M., Ciais, P., & Zhu, B. (2006). Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology, 12(4), 672–685.

    Article  Google Scholar 

  • Piao, S. L., Ciais, P., Huang, Y., Shen, Z. H., Peng, S. S., Li, J. S., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Ramankutty, N., & Foley, J. A. (1998). Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles, 12(4), 667–685.

    Article  CAS  Google Scholar 

  • Ramankutty, N., Delire, C., & Snyder, P. (2006). Feedbacks between agriculture and climate: An illustration of the potential unintended consequences of human land use activities. Global and Planetary Change, 54(1–2), 79–93.

    Article  Google Scholar 

  • Rowhani, P., Lobell, D. B., Linderman, M., & Ramankutty, N. (2011). Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology, 151(4), 449–460.

    Article  Google Scholar 

  • Schmidhuber, J., & Tubiello, F. N. (2007). Climate Change and Food Security Special Feature: Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19703–19708.

    Article  PubMed  CAS  Google Scholar 

  • Selvaraju, R., Gommes, R., & Bernardi, M. (2011). Climate science in support of sustainable agriculture and food security. Climate Research, 47(1–2), 95–110.

    Article  Google Scholar 

  • Shi, W., Tao, F., & Liu, J. (2012). Changes in cropland and water resources in Huang-Huai-Hai Plain of China and the implications for grain production. Food Security. doi:10.1007/s12571-012-0225-9.

    Google Scholar 

  • State Council of People's Republic of China. (2008). China’s food security, medium-and long-term Plan (2008–2020). http://www.gov.cn/test/2008-11/14/content_1148698.htm.

  • Tao, F., Yokozawa, M., Hayashi, Y., & Lin, E. (2003a). Changes in agricultural water demands and soil moisture in China over the last half-century and their effects on agricultural production. Agricultural and Forest Meteorology, 118(3–4), 251–261.

    Article  Google Scholar 

  • Tao, F. L., Yokozawa, M., Hayashi, Y., & Lin, E. D. (2003b). Future climate change, the agricultural water cycle, and agricultural production in China. Agriculture Ecosystems & Environment, 97(1–3), 361–361.

    Article  Google Scholar 

  • Tao, F. L., Yokozawa, M., Hayashi, Y., & Lin, E. (2005). A perspective on water resources in China: interactions between climate change and soil degradation. Climatic Change, 68(1–2), 169–197.

    Article  CAS  Google Scholar 

  • Tao, F. L., Yokozawa, M., Liu, J. Y., & Zhang, Z. (2008). Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research, 38(1), 83–94.

    Article  Google Scholar 

  • Tao, F. L., Zhang, Z., & Yokozawa, M. (2011). Dangerous levels of climate change for agricultural production in China. Regional Environmental Change, 11, S41–S48.

    Article  Google Scholar 

  • Tao, F., Zhang, Z., Zhang, S., Zhu, Z., & Shi, W. (2012). Response of crop yields to climate trends since 1980 in China. Climate Research, 54, 233–247.

    Article  Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). Land change science special feature: The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20666–20671.

    Article  PubMed  CAS  Google Scholar 

  • Tweeten, L., & Thompson, S. (2009). Long-term global agricultural output supply demand balance. Farm Policy Journal, 6(1), 1–16.

    Google Scholar 

  • Vergni, L., & Todisco, F. (2011). Spatio-temporal variability of precipitation, temperature and agricultural drought indices in Central Italy. Agricultural and Forest Meteorology, 151(3), 301–313.

    Article  Google Scholar 

  • Wang, H. (2005). Research on food security in China. Beijing: China Agriculture Press.

    Google Scholar 

  • World Bank. (2008). World Development Report 2008: Agriculture for Development. Washington, DC: United States by Quebecor World.

    Google Scholar 

  • Yan, L. Y. (2001). Agricultural meteorology. Beijing: China Agriculture Press.

    Google Scholar 

  • Yan, H. M., Liu, J. Y., Huang, H. Q., Tao, B., & Cao, M. K. (2009). Assessing the consequence of land use change on agricultural productivity in China. Global and Planetary Change, 67(1–2), 13–19.

    Article  Google Scholar 

  • Yang, G. Y., Wang, L., & Wang, H. (2010). Thinking of food security in China based on regional water resources and land cultivation. Transactions of the Chinese Society of Agricultural Engineering, 26(12), 1–5.

    Google Scholar 

  • Ye, L. M., & Ranst, E. V. (2009). Production scenarios and the effect of soil degradation on long-term food security in China. Global Environmental Change-Human and Policy Dimensions, 19(4), 464–481.

    Article  Google Scholar 

  • Zhang, X. S., & Srinivasan, R. (2009). GIS-based spatial precipitation estimation: A comparison of geostatistical approaches. Journal of the American Water Resources Association, 45(4), 894–906.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (Project No. 2010CB950900), Chinese National Natural Science Foundation (41071344), Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KZCX2-EW-306), and "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA05090310). We gratefully acknowledge Dr. Jinwei Dong (University of Oklahoma) for providing the calculating program of AAT10 and Dr. Xuehong Bai for calculating AAT10 for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyuan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Liu, J., Shi, W. et al. Spatial-temporal changes of cropland and climate potential productivity in northern China during 1990–2010. Food Sec. 5, 499–512 (2013). https://doi.org/10.1007/s12571-013-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-013-0280-x

Keywords

Navigation