Skip to main content
Log in

Beacons for supporting lunar landing navigation

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Current and future planetary exploration missions involve a landing on the target celestial body. Almost all of these landing missions are currently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground-based infrastructure supporting the onboard navigation system and analyzes the impact on the achievable navigation accuracy. For that purpose, the paper starts with an existing navigation architecture based on optical navigation and extends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. With the origin in the center of the Moon, z-axis pointing to the North pole, and x- and y-axes spanning the equatorial plane.

  2. Where the downrange direction points in the nominal flight direction, the altitude is aligned along the local vertical and the crossrange is perpendicular to both.

References

  1. Andert, F., Ammann, N., Maass, B.: Lidar-aided camera feature tracking and visual slam for spacecraft low-orbit navigation and planetary landing. In: CEAS EuroGNC 2015. http://elib.dlr.de/96323/ (2015)

  2. Batista, P., Silvestre, C., Oliveira, P.: Single beacon navigation: observability analysis and filter design. Am Control Conf ACC 2010, 6191–6196 (2010). doi:10.1109/ACC.2010.5531613

    Google Scholar 

  3. Beggins, A.J., Canney, L.M., Dolezal, A.B., States., U.: Conceptual development of a ground-based radio-beacon navigation system for use on the surface of the moon [microform]. Prepared by Andrew J. Beggins, Lora M. Canney, Anna Belle Dolezal. Mechanical Engineering Design Project, University of Texas at Austin, Austin (1988)

  4. Bora, L.: Ground beacons to enhance lunar landing autonomous navigation architectures. Master’s thesis, Politecnico di Milano, Milano. http://elib.dlr.de/100498/ (2015)

  5. Chelmins, D.T., Welch, B.W., Sands, O.S., Nguyen, B.V.: A kalman approach to lunar surface navigation using radiometric and inertial measurements. Tech. Rep. 20090027870, National Aeronautics and Space Administration, NASA Glenn Research Center, Cleveland, OH, United States. http://ntrs.nasa.gov/search.jsp?R=20090027870 (2009)

  6. Christensen, D., Geller, D.: Terrain-relative and beacon-relative navigation for lunar powered descent and landing. J Astron Sci 58(1), 121–151 (2011). doi:10.1007/BF03321162

    Article  Google Scholar 

  7. Christensen, D.P.: Terrain-relative and beacon-relative navigation for lunar powered descent and landing. Master’s thesis, Utah State University, Logan, Utah. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1257&context=etd (2009)

  8. Davies, J.L., Striepe, S.A.: Advances in POST2 end-to-end descent and landing simulation for the ALHAT project. AIAA-2008-6938. American Institute of Aeronautics and Astronautics (2008)

  9. Department of Defence and Department of Transport: 2001 Federal Radionavigation Systems. National Technical Information Service, Springfield, 22161 (2001)

  10. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. pp. 99–108 (2006)

  11. Epp, C., Smith, T., NASA, H.: Autonomous precision landing and hazard detection and avoidance technology (ALHAT). In: 2007 IEEE Aerospace Conference, pp. 1–7 (2007)

  12. Grelier, T., Guidotti, P.Y., Delpech, M., Harr, J., Thevenet, J.B., Leyre, X.: Formation flying radio frequency instrument: first flight results from the prisma mission. In: 2010 5th ESA workshop on satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC), pp. 1–8 (2010). doi:10.1109/NAVITEC.2010.5708059

  13. Heise, D.T.S.G., Steffes, S.R., Theil, S.: Filter design for small integrated navigator for planetary exploration. In: 61. Deutscher Luft- und Raumfahrtkongress 2012. http://elib.dlr.de/81142/ (2012)

  14. Houdou, B., The ESA NEXT Lunar Lander Team: NEXT Lunar Lander with in-situ science and mobility: phase a mission study, mission requirements document. Internal report NEXT-LL-MRD-ESA(HME)-0001, ESA (2008)

  15. Huang, Y., Hu, X., Li, P., Cao, J., Jiang, D., Zheng, W., Fan, M.: Precise positioning of the Chang’e-3 lunar lander using a kinematic statistical method. Chin Sci Bull 57(35), 4545–4551 (2012). doi:10.1007/s11434-012-5484-5

    Article  Google Scholar 

  16. Kayton, M., Fried, W.R.: Avionics navigation systems, 2nd edn. Wiley, New York (1997)

    Book  Google Scholar 

  17. Lockner, E., Oehlschlägel, T., Theil, S., Knauer, M., Tietjen, J., Büskens, C.: Real-time capable trajectory synthesis via multivariate interpolation methods for a moon landing manoeuvre. CEAS Space J 6(2), 107–118. http://elib.dlr.de/97751/ (2014)

  18. Maass, B., et. al.: An edge-free, scale-, pose- and illumination-invariant approach to crater detection for spacecraft navigation. In: 7th International Symposium on Image and Signal Processing and Analysis (ISPA 2011). Dubrovnik, Croatia (2011)

  19. Montenbruck, O., Ebinuma, T., Lightsey, E., Leung, S.: A real-time kinematic gps sensor for spacecraft relative navigation. Aerosp Sci Technol 6(6), 435–449. http://elib.dlr.de/11383/. LIDO-Berichtsjahr=2002 (2002)

  20. NASA: How to protect and preserve the historic and scientific value of U.S. government lunar artifacts. Tech. rep., National Aeronautics and Space Administration (2011)

  21. Oehlschlägel, T., Theil, S., Krüger, H., Knauer, M., Tietjen, J., Büskens, C.: Optimal guidance and control of lunar landers with non-throttable main engine. In: Adv Aerosp Guid Navig Control (2011)

  22. Parkinson, B., Spilker Jr., J.: Global positioning system: theory and applications volume II. progress in astronautics and aeronautics. AIAA 164 (1996)

  23. Schier, J.: Nasa’s lunar space communication and navigation architecture. In: International communications satellite systems conferences (ICSSC). American Institute of Aeronautics and Astronautics. doi:10.2514/6.2008-5476 (2008)

  24. Steffes, S.R.: Development and analysis of shefex-2 hybrid navigation system experiment. Ph.D. thesis, DLR Bremen. http://elib.dlr.de/82946/ (2013)

  25. Steffes, S.R., Theil, S., Dumke, M., Heise, D., Sagliano, M., Samaan, M.A., Laan, E., Durkut, M., Duivenvoorde, T., Nijkerk, D., Schulte, J., Söderholm, S., Skaborn, D., Berkhout, J., Esposito, M., Conticello, S., Visee, R., Monna, B., Stelwagen, F.: SINPLEX: a small integrated navigation system for planetary exploration. In: 36th Annual AAS Guidance and Control Conference. AAS, Breckenridge, Colorado, AAS 13-043 (2013)

  26. Theil, S., Krüger, H.: Analyse missionen. Internal report AT-RYNR-TN-002, DLR (2010)

  27. Wedler, A., Hellerer, M., Rebele, B., Gmeiner, H., Vodermayer, B., Bellmann, T., Barthelmes, S., Rosta, R., Lange, C., Witte, L., Schmitz, N., Knapmeyer, M., Czeluschke, A., Thomsen, L., Waldmann, C., Flögel, S., Wilde, M., Takei, Y.: Robex-components and methods for the planetary exploration demonstration mission. In: 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), ASTRA. ESAWebsite, http://elib.dlr.de/98242/ (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Theil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theil, S., Bora, L. Beacons for supporting lunar landing navigation. CEAS Space J 9, 77–95 (2017). https://doi.org/10.1007/s12567-016-0132-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0132-6

Keywords

Navigation