Skip to main content
Log in

Numerical and experimental analysis of spallation phenomena

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post-shock layer. Results from a test campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of short exposure images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30-s test at 100 W/cm2 of cold-wall heat flux, more than 722 particles were detected, with an average velocity of 110 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin, A., Cozmuta, I., Boyd, I.D., Wright, M.J.: Kinetic rates for gas-Phase chemistry of phenolic-based carbon ablator in atmospheric air. J. Thermophys. Heat Transf. 29(2), 222 (2015). doi:10.2514/1.T4184

    Article  Google Scholar 

  2. Martin, A., Boyd, I.D.: Modeling of heat transfer attenuation by ablative gases during the stardust reentry. J. Thermophys. Heat Transf. 29(3), 450 (2015). doi:10.2514/1.T4202

    Article  Google Scholar 

  3. Weng, H., Bailey, S.C.C., Martin, A.: Numerical study of iso-Q sample geometric effects on charring ablative materials. Int. J. Heat Mass Transf. 80, 570 (2015). doi:10.1016/j.ijheatmasstransfer.2014.09.040

    Article  Google Scholar 

  4. Weng, H., Martin, A.: Multidimensional modeling of pyrolysis gas transport inside charring ablative materials. J. Thermophys. Heat Transf. 28(4), 583 (2014). doi:10.2514/1.T4434

    Article  Google Scholar 

  5. Weng, H., Martin, A.: Numerical investigation of thermal response using orthotropic charring ablative material. J. Thermophys. Heat Transf. 29(3), 429 (2015). doi:10.2514/1.T4576

    Article  Google Scholar 

  6. Miller, M.A., Martin, A., Bailey, S.C.C.: Investigation of the scaling of roughness and blowing effects on turbulent channel flow. Exp. Fluids 55(2), 1 (2014). doi:10.1007/s00348-014-1675-y

    Article  Google Scholar 

  7. Sullivan, J.M., Kobayashi, W.S.: Spallation modeling in the charring material thermal response and ablation (CMA) computer program. In: 22nd AIAA Thermophysics Conference. AIAA Paper 1987–1516, pp. 1–7 (1987). doi:10.2514/6.1987-1516

  8. Lundell, J.H.: Spallation of the Galileo probe heat shield. In AIAA/ASME 3rd Joint Thermophysics and Heat Transfer Conference, AIAA Paper 82–0852, St. Louis, MO (1982). doi:10.2514/6.1982-852

  9. Wakefield, R.M., Pitts, W.C.: Analysis of the heat-shield experiment on the pioneer-venus entry probes. In: 15th Thermophysics Conference, AIAA Paper 1980–1494, Snowmass, CO (1980). doi:10.2514/6.1980-1494

  10. Balakrishnan, A., Nicolet, W.E.: Galileo probe forebody thermal protection - Benchmark heating environment calculations. In: 16th Thermophysics Conference, AIAA Paper 1981–1072, Palo Alto, CA (1981). doi:10.2514/6.1981-1072

  11. Milos, F.S.: Galileo probe heat Shield ablation experiment. J. Spacecr. Rockets 34(6), 705 (1997). doi:10.2514/2.3293

    Article  Google Scholar 

  12. Moss, J., Simmonds, A.: Galileo probe forebody flowfield predictions during Jupiter entry. In: 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, AIAA Paper 1982–0874, St. Louis, MO (1982). doi:10.2514/6.1982-874

  13. Kihara, H., Hatano, M., Nakiyama, N., Abe, K., Nishida, M.: Preliminary studies of spallation particles ejected from an ablator. Trans. Jpn. Soc. Aeronaut. Space Sci. 49(164), 65 (2006). doi:10.2322/tjsass.49.65

    Article  Google Scholar 

  14. Yoshinaka, T.: Spallation measurement at the ablator plasma wind tunnel tests. Tech. Rep. NASDA-TMR-970006E, National Space Development Agency of Japan, Tokyo (1998). https://repository.exst.jaxa.jp/dspace/handle/a-is/31442

  15. Davies, C., Park, C.: Trajectories of solid particles spalled from a carbonaceous heat shield. In: 20th Aerospace Sciences Meeting, AIAA Paper 1982-200, Orlando, FL (1982). doi:10.2514/6.1982-200

  16. Pace, A., Ruffin, S., Barnhardt, M.: A coupled approach for predicting radiation attenuation in particle-laced flows. In: 42nd AIAA Thermophysics Conference, AIAA Paper 2011-3771, Honolulu, Hawaii (2011). doi:10.2514/6.2011-3771

  17. Nozawa, S., Kihara, H., Ichi Abe, K.: Numerical investigation of spalled particle behavior ejected from an ablator surface. Trans. Jpn. Soc. Aeronaut. Space Sci. 8(ists27), Pe\_9 (2010). doi:10.2322/tastj.8.Pe_9

  18. Milos, F., Chen, Y.K.: Ablation, thermal response, and chemistry program for analysis of thermal protection systems. In: 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2010-4663, Chicago, IL (2010). doi:10.2514/6.2010-4663

  19. Inman, J.A., Bathel, B.F., Johansen, C.T., Danehy, P.M., Jones, S.B., Gragg, J.G., Splinter, S.C.: Nitric-Oxide planar laser-induced fluorescence measurements in the hypersonic materials environmental test system. AIAA J. 51(10), 2365 (2013). doi:10.2514/1.J052246

    Article  Google Scholar 

  20. Zhang, H., Weng, H., Martin, A.: Simulation of flow-tube oxidation on the carbon preform of PICA. In 52nd AIAA Aerospace Sciences Meeting, AIAA Paper 2014-1209, National Harbor, MD (2014). doi:10.2514/6.2014-1209

  21. Zhang, H., Martin, A., McDonough, J.M.: Parallel efficiency of the freeCFD code for hypersonic flows with chemistry. In: 24th International Conference on Parallel Computational Fluid Dynamics, Atlanta, GA (2012)

  22. Park, C.: Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen. J. Thermophys. Heat Transf. 2(1), 8 (1988). doi:10.2514/3.55

    Article  Google Scholar 

  23. Blottner, F.G., Johnson, M., Ellis, M.: Chemically reacting viscous flow program for multi-component gas mixtures. Tech. Rep. SC-RR-70-754, Sandia National Laboratories, Albuquerque, New Mexico (1971). doi:10.2172/4658539

  24. Vincenti, W.G., Kruger, C.H.: Introduction to physical gas dynamics. Krieger Publishing Company, Malabar, Florida (1982)

  25. Zhang, H.: High temperature flow solver for aerothermodynamics problems. Ph.D. Thesis, University of Kentucky, Lexington, KY (2015). http://uknowledge.uky.edu/me_etds/64

  26. Driver, D.M., MacLean, M.: Improved predictions of PICA recession in arc jet shear tests. In: 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-141 (2011). doi:10.2514/6.2011-141

  27. Maclean, M., Marschall, J., Driver, D.M.: Finite-Rate surface chemistry model, II: Coupling to viscous navier-stokes code. In: 42nd AIAA Thermophysics Conference, AIAA Paper 2011-3784 (2011). doi:10.2514/6.2011-3784

  28. Davuluri, R.S.C., Martin, A.: Numerical study of spallation phenomenon in an arc-jet environment. In: 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2014-2249, Atlanta, GA, (2014). doi:10.2514/6.2014-2249

  29. Davuluri, R.S.C., Zhang, H., Martin, A.: Numerical study of spallation phenomenon in an arc-jet environment. J. Thermophys. Heat Transf. 30(1), 32 (2015). doi:10.2514/1.T4586

  30. Davuluri, R.S.C.: Modeling of spallation phenomenon in an arc-jet environment. M.Sc. Thesis, University of Kentucky, Lexington, KY (2015). http://uknowledge.uky.edu/me_etds/63

  31. Davuluri, R.S.C., Zhang, H., Martin, A.: Effect of spalled particles thermal degradation on a hypersonic flow field environment. In: 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0248, San Diego, CA (2016). doi:10.2514/6.2016-0248

  32. Danehy, P.M., Hires, D.V., Johansen, C.T., Bathel, B.F., Jones, S.B., Gragg, J.G., Splinter, S.C.: Quantitative spectral radiance measurements in the HYMETS arc jet. In: 50th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2012-856, Nashville, TN (2012). doi:10.2514/6.2012-856

  33. Majid, A., Bauder, U., Herdrich, G., Fertig, M.: Effect of dust particles on space vehicles entering Mars at hypersonic speeds. In: 63rd International Astronautical Congress (IAC 2012), IAC-12, A3,3C,11, x13315, Naples, Italy (2012). http://iafastro.directory/iac/archive/browse/IAC-12/A3/3C/13315/

  34. Majid, A., Bauder, U., Stindl, T., Fertig, M., Herdrich, G., Röser, H.P.: Development of a two phase solver accounting for solid particles in continuum gas flows. In: 40th Thermophysics Conference, AIAA Paper 2008-4105, Seattle, WA (2008). doi:10.2514/6.2008-4105

  35. Raiche, G.A., Driver, D.M.: Shock layer optical attenuation and emission spectroscopy measurements during arc jet testing with ablating models. In: 42th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2004-0825, Reno NV (2004). doi:10.2514/6.2004-825

  36. Park, C., Raiche, G.A., Driver, D.M.: Radiation of spalled particles in shock layers. J. Thermophys. Heat Transf. 18(4), 519 (2004). doi:10.2514/1.8098

    Article  Google Scholar 

  37. Tran, H.K., Johnson, C.E., Rasky, D.J., Hui, F.C.L., Hsu, M.T., Chen, Y.K.: Phenolic impregnated carbon ablators (PICA) for discovery class missions. In: 31st AIAA Thermophysics Conference. AIAA Paper 1996-1911, New Orleans, LA, pp. 1–14 (1996). doi:10.2514/6.1996-1911

Download references

Acknowledgments

Financial support for this work was provided by NASA Award NNX13AN04A, NASA Award NNX14AI97G and NASA Kentucky EPSCoR Award NNX10AV39A. Additional support was generously provided by the Hypersonic EDL program, through M.J. Wright at NASA Ames. The authors are immensely grateful to him. They also would like to thank M.J. Gasch at NASA Ames, as well as J.G. Gragg and S.B. Jones at NASA Langley for their technical assistance. Lastly, the authors are grateful to E. Sozer at NASA Ames for insightful discussions on the CFD code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Martin.

Additional information

This paper is based on a presentation at the 8th European Symposium on Aerothermodynamics for Space Vehicles, March 2–6, 2015, Lisbon, Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A., Bailey, S.C.C., Panerai, F. et al. Numerical and experimental analysis of spallation phenomena. CEAS Space J 8, 229–236 (2016). https://doi.org/10.1007/s12567-016-0118-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0118-4

Keywords

Navigation