Skip to main content
Log in

Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase–green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase–green fluorescent protein transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alreja M, Shanabrough M, Liu W, Leranth C (2000a) Opioids suppress IPSCs in neurons of the rat medial septum/diagonal band of Broca: involvement of mu-opioid receptors and septohippocampal GABAergic neurons. J Neurosci 20:1179–1189

    CAS  PubMed  Google Scholar 

  • Alreja M, Wu M, Liu W, Atkins JB, Leranth C, Shanabrough M (2000b) Muscarinic tone sustains impulse flow in the septohippocampal GABA but not cholinergic pathway: implications for learning and memory. J Neurosci 20:8103–8110

    CAS  PubMed  Google Scholar 

  • Asada H (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229:891–895

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  PubMed  Google Scholar 

  • Castaneda MT, Garrido-Sanabria ER, Hernandez S et al (2005) Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat. Neurosci Res 52:107–119

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 62:651–656

    Article  CAS  PubMed  Google Scholar 

  • Colom LV (2006) Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. J Neurochem 96:609–623

    Article  CAS  PubMed  Google Scholar 

  • Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E (2005) Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 58:151–164

    Article  CAS  PubMed  Google Scholar 

  • Deller T, Leranth C, Frotscher M (1994) Reciprocal connections of lateral septal neurons and neurons in the lateral hypothalamus in the rat: a combined phaseolus vulgaris-leucoagglutinin and fluoro-gold immunocytochemical study. Neurosci Lett 168:119–122

    Article  CAS  PubMed  Google Scholar 

  • Drugan RC, Morrow AL, Weizman R et al (1988) Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res 487:45–51

    Article  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    Article  CAS  PubMed  Google Scholar 

  • Esclapez M, Tillakaratne NJ, Tobin AJ, Houser CR (1993) Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J Comp Neurol 331:339–362

    Article  CAS  PubMed  Google Scholar 

  • Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14:1834–1855

    CAS  PubMed  Google Scholar 

  • Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34:689–706

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, London

  • Garrido-Sanabria ER, Castaneda MT, Banuelos C, Perez-Cordova MG, Hernandez S, Colom LV (2006) Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 142:871–883

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Michetti C, Busnelli M et al (2013) Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology 39:1102–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Kash SF, Johnson RS, Tecott LH et al (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:14060–14065

  • Kaufman DL, McGinnis JF, Krieger NR, Tobin AJ (1986) Brain glutamate decarboxylase cloned in lambda gt-11: fusion protein produces gamma-aminobutyric acid. Science 232:1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Köhler C, Chan-Palay V (1983) Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area: an immunohistochemical study using antibodies to glutamic acid decarboxylase in the rat brain. Anat Embryol 167:53–65

  • Köhler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol (Berlin) 169:41–44

    Article  Google Scholar 

  • Leranth C, Frotscher M (1989) Organization of the septal region in the rat brain: cholinergic–GABAergic interconnections and the termination of hippocampus–septal fibers. J Comp Neurol 289:304–314

  • Lopez-Bendito G (2004) Preferential origin and layer destination of GAD65–GFP cortical interneurons. Cereb Cortex 14:1122–1133

    Article  PubMed  Google Scholar 

  • Marczynski TJ (1998) GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease revisited. Brain Res Bull 45:341–379

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin BJ, Barber R, Saito K, Roberts E, Wu JY (1975a) Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J Comp Neurol 164:305–321

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin BJ, Wood JG, Saito K, Roberts E, Wu JY (1975b) The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res 85:355–371

    Article  CAS  PubMed  Google Scholar 

  • Numan R (2000) The behavioral neuroscience of the septal region. Springer, New York

    Book  Google Scholar 

  • Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    CAS  PubMed  Google Scholar 

  • Panula P, Revuelta AV, Cheney DL, Wu JY, Costa E (1984) An immunohistochemical study on the location of GABAergic neurons in rat septum. J Comp Neurol 222:69–80

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KB (2013) The mouse brain in stereotaxic coordinates. Elsevier, San Diego

    Google Scholar 

  • Rimvall K, Sheikh SN, Martin DL (1993) Effects of increased gamma-aminobutyric acid levels on GAD, protein and mRNA levels in rat cerebral cortex. J Neurochem 60:714–720

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Swanson LW (1996) Structural evidence for functional domains in the rat hippocampus. Science 272:1484–1486

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195

    Article  CAS  PubMed  Google Scholar 

  • Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Rev 46:71–117

    Article  PubMed  Google Scholar 

  • Soghomonian JJ, Laprade N (1997) Glutamate decarboxylase (GAD67 and GAD65) gene expression is increased in a subpopulation of neurons in the putamen of parkinsonian monkeys. Synapse 27:122–132

    Article  CAS  PubMed  Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT et al (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67–GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2014) Immunofluorescently labeling glutamic acid decarboxylase 65 coupled with confocal imaging for identifying GABAergic somata in the rat dentate gyrus: a comparison with labeling glutamic acid decarboxylase 67. J Chem Neuroanat 61–62:51–63

  • Yuan PQ, Granas C, Kallstrom L et al (1997) Differential distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs in the entopeduncular nucleus of the rat. Neuroscience 78:87–97

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Driessen T, Gammie SC (2012) Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice. Brain Res 1470:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Eisinger B, Gammie SC (2013) Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 8:e73750. http://www.plosone.org. Accessed 30 Jan 2014

Download references

Acknowledgments

We would like to thank Dr. Paul Bolam and Dr. Juan Mena-Segovia (University of Oxford, Anatomical Neuropharmacology Unit) for providing transgenic mice brains for the experiments conducted in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ural Verimli.

Ethics declarations

Funding

Grant sponsor: Marmara University Scientific Research Projects Unit (SAG-C-TUP-250608-0162) to Dr. Umit S. Sehirli.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verimli, U., Sehirli, U.S. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study. Anat Sci Int 91, 398–406 (2016). https://doi.org/10.1007/s12565-015-0316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-015-0316-8

Keywords

Navigation