Skip to main content

Advertisement

Log in

Screening of lactic acid bacteria isolated from fermented food as potential probiotics for aquacultured carp and amberjack

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

This study aimed to isolate lactic acid bacteria from fermented foods and evaluate their probiotic properties for application to aquaculture. Sixty-five bacteria strains were isolated using MRS (de Man, Rogosa & Sharpe) media. Using a double-layer agar method, three strains, GYP 31, L 15 and K-C2, showed antagonistic activities against all test pathogens belonging to Edwardsiella tarda, Streptococcus dysgalactiae, S. iniae and Lactococcus garvieae. These strains were able to survive in a pH range from 2.0 to 9.0 and at NaCl concentrations of 0, 3 and 5%. In the tolerance test, strain K-C2 displayed higher tolerance than strains GYP 31 and L 15 under the stimulation of acidic pH buffers and artificial gastric-intestinal juices. Thus, strain K-C2 was selected as a probiotic candidate and identified as L. lactis based on the sequences determined in 16S rRNA gene (1438 bp) analysis. It was observed to be ovoid in shape and to be catalase-negative in morphological and biochemical investigations. Strain K-C2 adhered to carp and amberjack intestinal mucus at bacterial densities of 1010 cfu/ml in in vitro tests with adhesion rates of 62 and 58%, respectively. Thus, L. lactis strain K-C2 was considered to be a potential probiotic candidate for use in sustainable aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:1–19

    Article  Google Scholar 

  • Balcazar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Girones O, Muzquiz JL (2007) In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Vet Microbiol 122:373–380

    Article  CAS  PubMed  Google Scholar 

  • Geis A, Singh J, Teuber M (1983) Potential of lactic streptococci to produce bacteriocin. Appl Environ Microbiol 45:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herich R, Levkut M (2002) Lactic acid bacteria, probiotics and immune system. Vet Med (Praha) 47:169–180

    Google Scholar 

  • Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260

    Article  PubMed  Google Scholar 

  • Joborn A, Olsson JC, Westerdahl A, Conway PL, Kjelleberg S (1997) Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1. J Fish Dis 20:383–392

    Article  Google Scholar 

  • Kim WS, Ren J, Dunn NW (1999) Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol Lett 171:57–65

    Article  CAS  PubMed  Google Scholar 

  • Kimoto-Nira H, Kobayahi M, Nomura M, Okamoto T, Fujita Y (2009) Factors for bile tolerance in Lactococcus lactis: analysis by using plasmid variants. Folia Microbiol (Praha) 54:395–400

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 88:55–66

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Namba A, Hirose H (2005) A simple microtiter plate assay method for mucosal adhesion of Aeromonas hydrophila and A. veronii using a water-soluble tetrazolium salt (WST-1). Aquaculture 53:413–417

    CAS  Google Scholar 

  • Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review: developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1–11

    Article  Google Scholar 

  • Page JW, Andrews JW, Murray MW (1976) Hydrogen ion concentration in the gastrointestinal tract of channel Catfish. J Fish Biol 8:225–228

    Article  CAS  Google Scholar 

  • Pu ZY, Dobos M, Limsowtin GKY, Powell IB (2002) Integrated polymerase chain reaction-based procedures for the detection and identification of species and subspecies of the Gram-positive bacterial genus Lactococcus. J Appl Microbiol 93:353–361

    Article  CAS  PubMed  Google Scholar 

  • Rallu F, Gruss A, Maguin E (1996) Lactococcus lactis and stress. Antonie Van Leeuwenhoek 70:243–251

    Article  CAS  PubMed  Google Scholar 

  • Ringø E, Gatesoupe FJ (1998) Lactic acid bacteria in fish: a review. Aquaculture 160:177–203

    Article  Google Scholar 

  • Saeedi M, Shahidi F, Mortazavi SA, Milani E, Yazdi FT (2015) Isolation and identification of lactic acid bacteria in winter salad (Local Pickle) during fermentation using 16S rRNA gene sequence analysis. J Food Saf 35:287–294

    Article  CAS  Google Scholar 

  • Sahadeva RPK, Leong SF, Chua KH, Tan CH, Chan HY, Tong EV, Wong SYW, Chan HK (2011) Survival of commercial probiotic strains to pH and bile. Int Food Res J 18:1515–1522

    Google Scholar 

  • Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L (2008) Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol 48:299–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanders JW, Venerna G, Kok J (1999) Environmental stress responses in Lactococcus lactis. FEMS Microbiol Rev 23:483–501

    Article  CAS  Google Scholar 

  • Schmitz A, Riesner D (2006) Purification of nucleic acids by selective precipitation with polyethylene glycol 6000. Anal Biochem 354:311–313

    Article  CAS  PubMed  Google Scholar 

  • Sequeiros C, Garces ME, Vallejo M, Marguet ER, Olivera NL (2015) Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Arch Microbiol 197:449–458

    Article  CAS  PubMed  Google Scholar 

  • Shelar SS, Warang SS, Mane SP, Sutar RL, Ghosh JS (2012) Characterization of bacteriocin produced by Bacillus atrophaeus strain JS-2. Int J Biol Chem 6:10–16

    Article  CAS  Google Scholar 

  • Stoffels G, Nissen-Meyer J, Gudmundsdottir A, Sletten K, Holo H, Nes IF (1992) Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Env Microbiol 58:1417–1422

    CAS  Google Scholar 

  • Sugita H, Ohta K, Kuruma A, Sagesaka T (2007) An antibacterial effect of Lactococcus lactis isolated from the intestinal tract of the Amur catfish, Silurus asotus Linnaeus. Aquac Res 38:1002–1004

    Article  Google Scholar 

  • Takanashi S, Miura A, Abe K, Uchida J, Itoi S, Sugita H (2014) Variations in bile tolerance among Lactococcus lactis strains derived from different sources. Folia Microbiol (Praha) 59:289–293

    Article  CAS  Google Scholar 

  • Tannock GW (1999) Identification of lactobacilli and bifidobacteria. Curr Issues Mol Biol 1:53–64. https://doi.org/10.21775/cimb.001.053

    CAS  PubMed  Google Scholar 

  • Taylor WI, Achanzar D (1972) Catalase test as an aid to the identification of Enterobacteriaceae. Appl Microbiol 24:58–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touraki M, Karamanlidou G, Koziotis M, Christidis I (2012) Antibacterial effect of Lactococcus lactis subsp. lactis on Artemia franciscana nauplii and Dicentrarchus labrax larvae against the fish pathogen Vibrio anguillarum. Aquac Int 21:481–495

    Article  Google Scholar 

  • Tsukatani T, Suenaga H, Higuchi T, Akao T, Ishiyama M, Ezoe K, Matsumoto K (2008) Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J Microbiol Methods 75:109–116

    Article  CAS  PubMed  Google Scholar 

  • Ustiugova EA, Timofeeva AV, Stoianova LG, Netrusov AI, Katrukha GS (2012) Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K. Prikl Biokhim Mikrobiol 48:618–625

    CAS  PubMed  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volzing K, Borrero J, Sadowsky MJ, Kaznessis YN (2013) Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synth Biol 2:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vural HC, Ozgun D (2011) An improving DNA isolation method for identification of anaerobic bacteria in human colostrum and faeces samples. J Med Genet Genom 3:95–100

    CAS  Google Scholar 

  • Vázquez JA, González MP, Murado MA (2005) Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 245:149–161

    Article  Google Scholar 

  • Wedajo B (2015) Lactic acid bacteria: benefits, selection criteria and probiotic potential in fermented food. J Prob Health 3:129. https://doi.org/10.4172/2329-8901.1000129

    Article  Google Scholar 

  • Yi H, Zhang L, Tuo Y, Han X, Du M (2010) A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria. Food Control 21:426–430

    Article  CAS  Google Scholar 

  • Zendo T (2013) Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci Biotechnol Biochem 77:893–899

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wang Y, Yao J, Li W (2010) Inhibition ability of probiotic, Lactococcus lactis, against A. hydrophila and study of its immunostimulatory effect in tilapia (Oreochromis niloticus). Int J Eng Sci Technol 2:73–80

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Kobayashi Ikuo for allowing us to collect samples at Sumiyoshi Live Stock Science Station, University of Miyazaki, and to Prof. Terutoyo Yoshida, Fish Diseases Laboratory, Department of Marine Biology and Environmental Sciences, University of Miyazaki for providing the pathogenic bacterial strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousuke Taoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linh, N.T.H., Sakai, K. & Taoka, Y. Screening of lactic acid bacteria isolated from fermented food as potential probiotics for aquacultured carp and amberjack. Fish Sci 84, 101–111 (2018). https://doi.org/10.1007/s12562-017-1150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1150-9

Keywords

Navigation