Skip to main content
Log in

Alterations of liver histology and blood biochemistry in blunt snout bream Megalobrama amblycephala fed high-fat diets

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

In this study we examined the effects of high-fat diets on alterations in liver histology features and blood biochemistry parameters in blunt snout bream Megalobrama amblycephala. Fish were fed three diets containing 5, 10, and 15 % fat, respectively, for 6 weeks prior to the liver histology examination and blood biochemistry testing. The livers of fish fed the 5 % fat diet showed a normal structure, whereas those of the fish fed the diets with a higher fat content presented nucleus polarization and lipid vacuolization. Transmission electron microscopy examination revealed that the hepatocytes of fish fed the 15 % fat diet had undergone ultrastructural alterations involving the mitochondria, nucleus, and endoplasmic reticulum (ER). Alterations in the blood biochemistry were evaluated to determine whether the blood biochemistry changes could be correlated with the observed alterations in liver histology with the aim of assessing the suitability of the investigated blood parameters as rapid indicators of liver condition. Significantly higher levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and of triglycerides and cholesterol were found in fish fed the 15 % fat diet. On the whole, the results clearly show that high fat intake resulted in fat accumulation and ultrastructural impairments of the mitochondria, nucleus, and ER. We conclude that blood sample measurements (AST, ALT, triglycerides, and cholesterol) could be used as a rapid test for determining liver status in blunt snout bream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Du ZY, Clouet P, Zheng WH, Degrace P, Tian LX, Liu YJ (2006) Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets. Br J Nutr 95:905–915

    Article  PubMed  CAS  Google Scholar 

  2. Li XF, Jiang YY, Liu WB, Ge XP (2012) Protein-sparing effect of dietary lipid in practical diets for blunt snout bream (Megalobrama amblycephala) fingerlings: effects on digestive and metabolic responses. Fish Physiol Biochem 38:529–541

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe T (1982) Lipid nutrition in fish. Comp Biochem Physiol 73B:3–15

    CAS  Google Scholar 

  4. Beamish FWH, Medland TE (1986) Protein sparing effects in large rainbow trout, Salmo gairdneri. Aquaculture 55:35–42

    Article  Google Scholar 

  5. Sargent JR, Bell JG, McEvoy L, Tocher DR, Estevez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–199

    Article  CAS  Google Scholar 

  6. Dos Santos J, Burkow IC, Jobling M (1993) Patterns of growth and lipid deposition in cod, Gadus morhua L., fed natural prey and fish-based feeds. Aquaculture 110:173–189

    Article  Google Scholar 

  7. Company R, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J (1999) Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture 171:279–292

    Article  CAS  Google Scholar 

  8. Craig SR, Washburn BS, Gatlin DM (1999) Effects of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. Fish Physiol Biochem 21:249–255

    Article  CAS  Google Scholar 

  9. Gaylord TG, Gatlin DM (2000) Dietary lipid level but not l-carnitine affects growth performance of hybrid striped bass (Morone chrysops female × M. saxatilis male). Aquaculture 190:237–246

    Article  CAS  Google Scholar 

  10. Hansen JØ, Berge GM, Hillestad M, Krogdahl Å, Galloway TF, Holm H, Holm J, Ruyter B (2008) Apparent digestion and apparent retention of lipid and fatty acids in Atlantic cod (Gadus morhua) fed increasing dietary lipid levels. Aquaculture 284:159–166

    Article  CAS  Google Scholar 

  11. Nanton DA, Lall SP, Ross NW, McNiven MA (2003) Effect of dietary lipid level on fatty acid beta-oxidation and lipid composition in various tissues of haddock, Melanogrammus aeglefinus L. Comp Biochem Physiol 135B:95–108

    CAS  Google Scholar 

  12. Rueda-Jasso R, Conceição LEC, Dias J, de CoenW W, Gomes E, Rees JF, Soares F, Dinis MT, Sorgeloos P (2004) Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles. Aquaculture 231:417–433

    Article  CAS  Google Scholar 

  13. Storch V, Juario JV (1983) The effect of starvation and subsequent feeding on the hepatocytes of Chanos chanos (Forsskal) fingerlings and fry. J Fish Biol 23:95–103

    Article  Google Scholar 

  14. Escaffre AM, Bergot P (1986) Morphologie quantitative du foie des alevins de truite arcen-ciel (Salmo gairdneri) issus de gros ou de petits oeufs: incidence de la date de premier repas. Arch Hydrobiol 107:331–348

    Google Scholar 

  15. Segner H, Braunbeck T (1988) Hepatocellular adaptation to extreme nutritional conditions in ide, Leuciscus idus melanotus L. (Cyprinidae). A morphofunctional analysis. Fish Physiol Biochem 5:79–97

    Article  CAS  Google Scholar 

  16. Levene AP, Goldin RD (2012) The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology 61:141–152

    Article  PubMed  Google Scholar 

  17. Manera M, Britti D (2006) Assessment of blood chemistry normal ranges in rainbow trout. J Fish Biol 69:1427–1434

    Article  CAS  Google Scholar 

  18. Folmar LC, Moody T, Bonomelli S, Gibson J (1992) Annual of blood chemistry parameters in striped mullet (Mugil cephalus L.) and pinfish (Lagodon rhomboides L.) from the Gulf of Mexico. J Fish Biol 41:999–1011

    Article  CAS  Google Scholar 

  19. Adam SM, Ham KD, Greeley MS, LeHew RF, Hinton DE, Saylor CF (1996) Downstream gradients in bioindicator responses: point source contaminant effects on fish. Can J Fish Aquat Sci 53:2177–2187

    Article  Google Scholar 

  20. Ministry of Agriculture of the People’s Republic of China (2010) Chinese fisheries yearbook. Chinese Agricultural Press, Beijing

    Google Scholar 

  21. Roberts RJ (1989) Fish pathology. Bailliere Tindall, London

    Google Scholar 

  22. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  23. Rietman S, Frankel SA (1957) Colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Google Scholar 

  24. Franzén LE, Ekstedt M, Kechagias S, Bodin L (2005) Semiquantitative evaluation overestimates the degree of steatosis in liver biopsies: a comparison to stereological point counting. Mod Pathol 18:912–916

    Article  PubMed  Google Scholar 

  25. Benedito-Palos L, Navarro JC, Sitjà-Bobadilla A, Bell JG, Kaushik S, Pérez-Sánchez J (2008) High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. Br J Nutr 100:992–1003

    Article  PubMed  CAS  Google Scholar 

  26. Spisni E, Tugnoli M, Ponticelli A, Mordenti T, Tomasi V (1998) Hepatic steatosis in artificially fed marine teleosts. J Fish Dis 21:177–184

    Article  PubMed  CAS  Google Scholar 

  27. Morais S, Bell JG, Robertson DA, Roy WJ, Morris PC (2001) Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L.): effects on growth, feed utilization, muscle composition and liver histology. Aquaculture 203:101–119

    Article  CAS  Google Scholar 

  28. Du ZY, Liu YJ, Tian LX, Wang JT, Wang Y, Liang GY (2005) Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquac Nutr 11:139–146

    Article  CAS  Google Scholar 

  29. Kjær MA, Vegusdal A, Berge GM, Galloway TF, Hillestad M, Krogdahl A, Holm H, Ruyter B (2009) Characterisation of lipid transport in Atlantic cod (Gadus morhua) when fasted and fed high or low fat diets. Aquaculture 288:325–336

    Article  Google Scholar 

  30. Ghittino P (1978) L’ascite della cieca (Anguilla anguilla) d’allevamento da degenerazione lipoidea epatica. Riv Ital Piscic Ittiop A 13:97–100

    Google Scholar 

  31. Shahidi F, Dunajski E (1994) Lipid fatty acid, growth and compositional characteristics of farmed cod (Gadus morhua). J Food Lipids 1:265–271

    Article  CAS  Google Scholar 

  32. Kaushik SJ (1997) Nutritional and the improvement of the seabass and seabream production in the Mediterranean region. In: Recent developments in the nutrition and feeding of marine finfish of interest to the Mediterranean. ALIIA Trades Show, Thessaloniki, 27 September

  33. Caballero MJ, Izquierdo MS, Kjørsvik E, Fernández AJ, Rosenlund G (2004) Histological alterations in the liver of sea bream, Sparus aurata L., caused by short- or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. J Fish Dis 27:531–541

    Article  PubMed  CAS  Google Scholar 

  34. Yang SD, Liu FG, Liou CH (2012) Effects of dietary l-carnitine, plant proteins and lipid levels on growth performance, body composition, blood traits and muscular carnitine status in Juvenile Silver Perch (Bidyanus bidyanus). Aquaculture 342:48–55

    Article  Google Scholar 

  35. Vetelainen R, Vliet A, Gulik TM (2007) Severe steatosis increases hepatocellular injury and impairs liver regeneration in a rat model of partial hepatectomy. Ann Surg 245:44–50

    Article  PubMed  Google Scholar 

  36. Bolla S, Nicolaisen O, Amin A (2011) Liver alterations induced by long term feeding on commercial diets in Atlantic halibut (Hippoglossus hippoglossus L.) females. Histological and biochemical aspects. Aquaculture 312:117–125

    Article  CAS  Google Scholar 

  37. Gill TJ, Pande J, Tewari H (1990) Hepatopathotoxicity of three pesticides in a freshwater fish (Puntius conchonius Ham). J Environ Sci Health 25B:653–663

    Google Scholar 

  38. Yuan YJ, Liu YJ, Yang HJ, Yuan Y, Liu FJ, Tian LX, Ling GY, Yuan RM (2012) Effect of dietary oxidized fish oil on growth performance, body composition, antioxidant defence mechanism and liver histology of juvenile largemouth bass Micropterus salmoides. Aquac Nutr 18:321–331

    Article  Google Scholar 

  39. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198

    Article  PubMed  CAS  Google Scholar 

  40. Du ZY, Clouet P, Huang LM, Degrace P, Zheng WH, He JG, Tian LX, Liu YJ (2008) Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): mechanism related to hepatic fatty acid oxidation. Aquac Nutr 14:77–92

    Article  CAS  Google Scholar 

  41. Bilinski E, Jonas REE (1970) Effects of coenzyme A and carnitine on fatty acid oxidation by rainbow trout mitochondria. J Fish Res Board Can 27:857–864

    Article  CAS  Google Scholar 

  42. Dara L, Ji C, Kaplowitz N (2011) The contribution of endoplasmic reticulum stress to liver diseases. Hepatology 53:1752–1763

    Article  PubMed  CAS  Google Scholar 

  43. Bell RM, Ballas LM, Coleman RA (1981) Lipid topogenesis. J Lipid Res 22:391–403

    PubMed  CAS  Google Scholar 

  44. Segner H, Witt U (1990) Weaning experiments with turbot (Scophthalmus maximus): electron microscopic study of liver. Mar Biol 105:353–361

    Article  Google Scholar 

  45. Karavia EA, Papachristou DJ, Kotsikogianni I, Triantafyllidou IE, Kypreos KE (2013) Lecithin/cholesterol acyltransferase modulates diet-induced hepatic deposition of triglycerides in mice. J Nutr Biochem 24:567–577

    Article  PubMed  CAS  Google Scholar 

  46. Coz-Rakovac R, Strunjak-perovic I, Hacmanjek M, Topic PN, Lipej Z, Sostaric B (2005) Blood chemistry and histological properties of wild and cultured sea bass (Dicentrarchus labrax) in the north Adriatic Sea. Vet Res Commun 29:677–687

    Article  PubMed  CAS  Google Scholar 

  47. Wood ME, Yasutake WT, Halver JE, Woodall AN (1990) Chemical and histological studies of wild hatchery salmon in fresh water. Trans Am Soc Fish 89:301–307

    Article  Google Scholar 

  48. Christofilogiannis P (1993) The veterinary approach to sea bass and sea bream. In: Brown L (ed) Aquaculture for veterinarians. Pergamon Press, Oxford, pp 379–395

    Google Scholar 

  49. Shahsavani D, Mohri M, Gholipour Kanani H (2010) Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiol Biochem 36:39–43

    Article  PubMed  CAS  Google Scholar 

  50. Pari L, Gnanasoundari M (2006) Influence of naringenin on oxytetracycline mediated oxidative damage in rat liver. Basic Clin Pharmacol Toxicol 98:456–461

    Article  PubMed  CAS  Google Scholar 

  51. Wagner T, Congleton JL (2004) Blood-chemistry correlates of nutritional condition, tissue damage, and stress in migrating juvenile Chinook salmon Oncorhynchus tshawytscha. Can J Fish Aquat Sci 61:1066–1074

    Article  CAS  Google Scholar 

  52. Sandnes K, Lie O, Waagbo R (1988) Normal ranges of some blood chemistry parameters in adult farmed Atlantic salmon, Salmo salar. J Fish Biol 32:129–136

    Article  CAS  Google Scholar 

  53. Mensinger AF, Walsh PJ, Halon RT (2005) Blood biochemistry of the oyster toadfish. J Aquat Anim Health 17:170–176

    Article  Google Scholar 

  54. Coz-Rakovac R, Strunjak-Perović I, Topić Popović N, Hacmanjek M, Smuc T, Jadan M, Lipej Z, Homen Z (2008) Cage culture effects on mullet (Mugilidae) liver histology and blood chemistry profile. J Fish Biol 72:2557–2569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Nature Science Foundation of China (31172418) and the China Agriculture research system (CARS-46-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-bin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Kl., Xu, Wn., Li, Jy. et al. Alterations of liver histology and blood biochemistry in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Sci 79, 661–671 (2013). https://doi.org/10.1007/s12562-013-0635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-013-0635-4

Keywords

Navigation