Skip to main content
Log in

Testing for Mediation Effect with Application to Human Microbiome Data

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Mediation analysis has been commonly used to study the effect of an exposure on an outcome through a mediator. In this paper, we are interested in exploring the mediation mechanism of microbiome, whose special features make the analysis challenging. We consider the isometric logratio transformation of the relative abundance as the mediator variable. Then, we present a de-biased Lasso estimate for the mediator of interest and derive its standard error estimator, which can be used to develop a test procedure for the interested mediation effect. Extensive simulation studies are conducted to assess the performance of our method. We apply the proposed approach to test the mediation effect of human gut microbiome between the dietary fiber intake and body mass index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    MATH  Google Scholar 

  2. Aitchison J (1999) Logratios and natural laws in compositional data analysis. Math Geol 31:563–580

    Google Scholar 

  3. Barfield R, Shen J, Just A, Vokonas P, Schwartz J, Baccarelli A, VanderWeele T, Lin X (2017) Testing for the indirect effect under the null for genome-wide mediation analyses. Genet Epidemiol 41:824–833

    Google Scholar 

  4. Baron R, Kenny D (1986) The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical consideration. J Personal Soc Psychol 51:1173–1182

    Google Scholar 

  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    MathSciNet  MATH  Google Scholar 

  6. Boca S, Sinha R, Cross A, Moore S, Sampson J (2014) Testing multiple biological mediators simultaneously. Bioinformatics 30:214–220

    Google Scholar 

  7. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–9

    Google Scholar 

  8. Chai HT, Jiang HM, Lin L, Liu L (2018) A marginalized two-part beta regression model for microbiome compositional data. PLoS Comput Biol 14:e1006329

    Google Scholar 

  9. Cao Y, Lin W, Li H (2018) Large covariance estimation for compositional data via composition-adjusted thresholding. J Am Stat Assoc. https://doi.org/10.1080/01621459.2018.1442340

    Article  MATH  Google Scholar 

  10. Chen EZ, Li H (2016) A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics 32:2611–2617

    Google Scholar 

  11. Chén O, Crainiceanu C, Ogburn E, Caffo B, Wager T, Lindquist M (2018) High-dimensional multivariate mediation with application to neuroimaging data. Biostatistics 19(2):121–136

    MathSciNet  Google Scholar 

  12. Coffman D, Zhong W (2012) Assessing mediation using marginal structural models in the presence of confounding and moderation. Psychol Methods 17:642–664

    Google Scholar 

  13. Egozcue J, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300

    MathSciNet  MATH  Google Scholar 

  14. Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space. J Royal Stat Soc 70:849–911

    MathSciNet  MATH  Google Scholar 

  15. Fritz M, Kenny D, MacKinnon D (2016) The combined effects of measurement error and omitting confounders in the single-mediator model. Multivar Behav Res 51:681–697

    Google Scholar 

  16. Gu F, Preacher K, Ferrer E (2014) A state space modeling approach to mediation analysis. J Educ Behav Stat 39:117–143

    Google Scholar 

  17. Hron K, Filzmoser P, Thompson K (2012) Linear regression with compositional explanatory variables. J Appl Stat 39:1115–1128

    MathSciNet  MATH  Google Scholar 

  18. Hr\(\mathring{{\rm u}}\)zová K, Todorov V, Hron K, Filzmoser P (2016) Classical and robust orthogonal regression between parts of compositional data. Statistics 50:1261–1275

  19. Huang Y, Pan W (2016) Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators. Biometrics 72:402–413

    MathSciNet  MATH  Google Scholar 

  20. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802

    MathSciNet  MATH  Google Scholar 

  21. Imai K, Keele L, Tingley D (2010) A general approach to causal mediation analysis. Psychol Methods 15:309–334

    Google Scholar 

  22. Ismail N, Ragab S, ElBaky A, Shoeib A, Alhosary Y, Fekry D (2011) Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci 7:501–507

    Google Scholar 

  23. Lin W, Shi P, Feng R, Li H (2014) Variable selection in regression with compositional covariates. Biometrika 101:785–797

    MathSciNet  MATH  Google Scholar 

  24. Liu L, Shih YCT, Strawderman RL, Zhang DW, Johnson B, Chai H (2019) Statistical analysis of zero-inflated continuous data: a review. Stat Sci 34:253–279

    MathSciNet  MATH  Google Scholar 

  25. MacKinnon D, Lockwood C, Hoffman J, West S, Sheets V (2002) A comparison of methods to test mediation and other intervening variable effects. Psychol Methods 7:83–104

    Google Scholar 

  26. MacKinnon D, Lockwood C, Williams J (2004) Confidence limits for the indirect effect: distribution of the product and resampling methods. Multivar Behav Res 39:99–128

    Google Scholar 

  27. MacKinnon D (2008) Introduction to statistical mediation analysis. Erlbaum and Taylor Francis Group, New York

    Google Scholar 

  28. Mandal S, Treuren W, White R, Eggesbø M, Knight R, Peddada S (2015) Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial Ecol Health Dis 26(1):27663

    Google Scholar 

  29. Martín-Fernández J, Barceló-Vidal C, Pawlowsky-Glahnm V (2003) Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol 35:253–278

    MATH  Google Scholar 

  30. Mert M, Filzmoser P, Endel G, Wilbacher I (2018) Compositional data analysis in epidemiology. Stat Methods Med Res 27:1878–1891

    MathSciNet  Google Scholar 

  31. Morais J, Thomas-Agnan C, Simioni M (2018) Using compositional and Dirichlet models for market share regression. J Appl Stat 45:1670–1689

    MathSciNet  Google Scholar 

  32. Preacher K, Hayes A (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891

    Google Scholar 

  33. Preacher K (2015) Advances in mediation analysis: a survey and synthesis of new developments. Annu Rev Psychol 66:825–852

    Google Scholar 

  34. Reid S, Tibshirani R, Friedman J (2016) A study of error variance estimation in lasso regression. Stat Sin 26:35–67

    MathSciNet  MATH  Google Scholar 

  35. Sampson J, Boca S, Moore S, Heller R (2018) FWER and FDR control when testing multiple mediators. Bioinformatics 34:2418–2424

    Google Scholar 

  36. Sobel M (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 13:290–312

    Google Scholar 

  37. Sohn M, Li H (2019) Compositional mediation analysis for microbiome studies. Ann Appl Stat 13:661–681

    MathSciNet  MATH  Google Scholar 

  38. Tang Z, Chen G, Alekseyenko A, Li H (2017) A general framework for association analysis of microbial communities on a taxonomic tree. Bioinformatics 33:1278–1285

    Google Scholar 

  39. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58:267–288

    MathSciNet  MATH  Google Scholar 

  40. Trompette A, Gollwitzer E, Yadava K et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166

    Google Scholar 

  41. Tsilimigras M, Fodor A (2016) Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol 26:330–335

    Google Scholar 

  42. VanderWeele T (2009) Marginal structural models for the estimation of direct and indirect effects. Epidemiology 20:18–26

    Google Scholar 

  43. VanderWeele T (2016) Mediation analysis: a practitioner’s guide. Annu Rev Public Health 37:17–32

    Google Scholar 

  44. Wang T, Zhao H (2017) Constructing predictive microbial signatures at multiple taxonomic levels. J Am Stat Assoc 112:1022–1031

    MathSciNet  Google Scholar 

  45. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Google Scholar 

  46. Yun Y, Kim H, Kim S et al (2017) Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol 17:151

    Google Scholar 

  47. Zhang C-H (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38:894–942

    MathSciNet  MATH  Google Scholar 

  48. Zhang C-H, Zhang S (2014) Confidence intervals for low dimensional parameters in high dimensional linear models. J R Stat Soc Ser B 76:217–242

    MathSciNet  MATH  Google Scholar 

  49. Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E, Vokonas P, Zhao L, Lv J, Baccarelli A, Hou L, Liu L (2016) Estimating and testing high-dimensional mediation effects in epigenetic studies. Bioinformatics 32:3150–3154

    Google Scholar 

  50. Zhang J, Wei Z, Chen J (2018) A distance-based approach for testing the mediation effect of the human microbiome. Bioinformatics 34:1875–1883

    Google Scholar 

  51. Zhao Y, Luo X (2016) Pathway Lasso: estimate and select sparse mediation pathways with high-dimensional mediators.arXiv:1603.07749v1, Preprint

  52. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67:301–320

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor, the Associate Editor, and two reviewers for their constructive and insightful comments and suggestions that greatly improved the manuscript. Research reported in this publication was supported by the NIH R21 AG063370 and UL1 TR002345. The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, J., Li, Z. et al. Testing for Mediation Effect with Application to Human Microbiome Data. Stat Biosci 13, 313–328 (2021). https://doi.org/10.1007/s12561-019-09253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-019-09253-3

Keywords

Navigation