Skip to main content

Advertisement

Log in

A Gel Filtration-Based Method for the Purification of Infectious Rotavirus Particles for Environmental Research Applications

  • Brief Communication
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

This article describes a rapid method for purifying infectious rotavirus particles from cell culture for environmental research. The method is based on size-exclusion chromatography using TOSOH TSKgel® G5000PWXL-CP with a TSKgel® Size Exclusion G2500PWxl guard column, set up on an AKTA Explorer10. Four peaks were identified from the chromatogram and the corresponding fractions were collected and analysed by electron microscopy, 1-step quantitative reverse transcription polymerase chain reaction (RT-PCR) and qNano measurement. Infectivity potential of the recovered virus particles was determined using cell culture. Our analysis reveals that the first fraction contains majority of the intact triple-layered infectious virions while the other three fractions contain mixtures of empty capsids and intact infectious virions. Our results also indicate that there is a gross overestimation of rotaviruses in crude extracts due to encapsidated RNA in the order of 2.3 × 1011 particles and we note that estimates by qNano are similarly skewed (1.36 × 1013 particle) possibly due to empty capsids and cellular debris. In summary we present a method for purification (~12 h) of rotaviruses for a more robust and accurate quantification of virus size, surface charge and particle concentration in environmental contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Arnold, M., Patton, J. T., & McDonald, S. M. (2009). Culturing, storage, and quantification of rotaviruses. Current Protocols in Microbiology, 15, 15C.13.11–15C.13.24. doi:10.1002/9780471729259.

    Google Scholar 

  • Bridger, J. C., Clarke, I. N., & McCrae, M. A. (1982). Characterization of an antigenically distinct porcine rotavirus. Infection and Immunity, 35(3), 1058–1062.

    PubMed  CAS  Google Scholar 

  • Durmaz, R., Otlu, B., & Direkel, S. (2002). Effect of multiple freezing and thawing of serum on TT virus and hepatitis B virus DNA positivity. Archives of Virology, 147(3), 515–518.

    Article  PubMed  CAS  Google Scholar 

  • Espinosa, A. C., Mazari-Hiriart, M., Espinosa, R., Maruri-Avidal, L., Méndez, E., & Arias, C. F. (2008). Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Research, 42(10–11), 2618–2628.

    Article  PubMed  CAS  Google Scholar 

  • Estes, M. K. (1996). Rotaviruses and their replication. In D. M. K. Bernard N. Fields & M. Peter Howley (Eds.), Fields virology (3. ed., Vol. 2, pp. 2 v. (xxi, 2950, 2997 p.): ill. (some col.); 2929 cm.). Philadelphia: Lippincott-Raven Publishers.

    Google Scholar 

  • Estes, M. K., Graham, D. Y., Smith, E. M., & Gerba, C. P. (1979). Rotavirus stability and inactivation. Journal of General Virology, 43(2), 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, L., Li, X., Wang, J., Nangmenyi, G., Economy, J., Kuhlenschmidt, T. B., et al. (2009). Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles. Water Research, 43(20), 5198–5208.

    Article  PubMed  CAS  Google Scholar 

  • Kalbfuss, B., Wolff, M., Morenweiser, R., & Reichl, U. (2007). Purification of cell culture-derived human influenza A virus by size-exclusion and anion-exchange chromatography. Biotechnology and Bioengineering, 96(5), 932–944.

    Article  PubMed  CAS  Google Scholar 

  • Krajden, M., Minor, J. M., Rifkin, O., & Comanor, L. (1999). Effect of multiple freeze-thaw cycles on hepatitis B virus DNA and hepatitis C virus RNA quantification as measured with branched-DNA technology. Journal of Clinical Microbiology, 37(6), 1683–1886.

    PubMed  CAS  Google Scholar 

  • Kvellestad, A., Dannevig, B. H., & Falk, K. (2003). Isolation and partial characterization of a novel paramyxovirus from the gills of diseased seawater-reared Atlantic salmon (Salmo salar L). Journal of General Virology, 84(Pt 8), 2179–2189.

    Article  PubMed  CAS  Google Scholar 

  • Pancorbo, O. C., Evanshen, B. G., Campbell, W. F., Lambert, S., Curtis, S. K., & Woolley, T. W. (1987). Infectivity and antigenicity reduction rates of human rotavirus strain Wa in fresh waters. Applied and Environmental Microbiology, 53(8), 1803–1811.

    PubMed  CAS  Google Scholar 

  • Peixoto, C., Sousa, M. F. Q., Silva, A. C., Carrondo, M. J. T., & Alves, P. M. (2007). Downstream processing of triple layered rotavirus like particles. Journal of Biotechnology, 127(3), 452–461.

    Article  PubMed  CAS  Google Scholar 

  • Pesavento, J. B., Crawford, S. E., Estes, M. K., & Prasad, B. V. (2006). Rotavirus proteins: structure and assembly. Current Topics in Microbiology and Immunology, 309, 189–219.

    Article  PubMed  CAS  Google Scholar 

  • Pinsky, N. A., Huddleston, J. M., Jacobson, R. M., Wollan, P. C., & Poland, G. A. (2003). Effect of multiple freeze-thaw cycles on detection of measles, mumps, and rubella virus antibodies. Clinical and Diagnostic Laboratory Immunology, 10(1), 19–21.

    PubMed  Google Scholar 

  • Pontes, L., Cordeiro, Y., Giongo, V., Villas-Boas, M., Barreto, A., Araújo, J. R., et al. (2001). Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein VP4. Journal of Molecular Biology, 307(5), 1171–1179.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, G. A., Argüelles, M. H., Castello, A. A., Mas, N. J., & Glikmann, G. (2002). A rapid method to produce high yields of purified rotavirus particles. Journal of Virological Methods, 104(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, R., Willmott, G., Kozak, D., Roberts, G. S., Anderson, W., Groenewegen, L., et al. (2011). Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor. Analytical Chemistry, 83(9), 3499–3506.

    Article  PubMed  CAS  Google Scholar 

  • Wyn-Jones, A. P., Carducci, A., Cook, N., D’Agostino, M., Divizia, M., Fleischer, J., et al. (2011). Surveillance of adenoviruses and noroviruses in European recreational waters. Water Research, 45(3), 1025–1038.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Wu, J. Y., Yi, S., Li, H. J., Zhang, G. M., Gao, Y., et al. (2012). Purification of rotavirus by two chromatographic methods. Chinese Journal of Biologicals, 25(6), 754–758.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was part of a Marsden Project funded by the Royal Society of New Zealand under Contract Number ESR-1001. Kata Farkas is funded by a PhD scholarship from the Project. We wish to thank Dr. Jeremie Langlet and Dr. Joanne Hewitt (Institute of Environmental Science and Research Ltd.) for their general discussions on virus purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Varsani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, K., Pang, L., Lin, S. et al. A Gel Filtration-Based Method for the Purification of Infectious Rotavirus Particles for Environmental Research Applications. Food Environ Virol 5, 231–235 (2013). https://doi.org/10.1007/s12560-013-9122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-013-9122-4

Keywords

Navigation