Skip to main content
Log in

A Unified Biologically-Inspired Prediction Framework for Classification of Movement-Related Potentials Based on a Logistic Regression Model

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The classifications for movement-related potentials (MRPs) are used to provide control signals for many motor-related brain–computer interfaces (BCIs). A discriminative spatial pattern (DSP) algorithm has been shown to be effective for extracting MRPs. However, the spatial filtering and feature extraction of DSP are not exactly consistent. In addition, DSP filtering and subsequent classifiers, such as support vector machines, are optimized toward different goals. These two drawbacks may degrade overall classification performance. In this paper, inspired by the multilayer perceptron, we propose a hierarchical framework based on a logistic regression model. Our framework directly extracts the distance between each pair of time series as a feature, and unifies spatial filtering and classification under a regularized empirical risk minimization problem. Experimental results from three BCI datasets recorded from five subjects demonstrate that our method can make more accurate classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Duan L, Zhong H, Miao J, Yang Z, Ma W, Zhang X. A voting optimized strategy based on ELM for improving classification of motor imagery BCI data. Cogn Comput. 2014;6(3):477–83.

    Article  Google Scholar 

  2. Wolpaw J, Wolpaw EW. Brain-computer interfaces: principles and practice. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  3. Xia B, Li X, Xie H, Yang W, Li J, He L. Asynchronous brain–computer interface based on steady-state visual-evoked potential. Cogn Comput. 2013;5:243–51.

    Article  Google Scholar 

  4. Cai Z, Makino S, Rutkowski TM. Brain evoked potential latencies optimization for spatial auditory brain–computer interface. Cogn Comput. 2015;7(1):34–43.

    Article  Google Scholar 

  5. Krepki R, Blankertz B, Curio G, Müller KR. The berlin brain–computer interface (bbci)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl. 2007;33(1):73–90.

    Article  Google Scholar 

  6. Felton EA. Evaluation of a modified Fitts law BCI target acquisition task in able and motor disabled individuals. J Neural Eng. 2009. doi:10.1088/1741-2560/6/5/056002.

  7. Ang KK, Chua KSG, Phua KS, Wang C, Chin ZY, Kuah CWK, et al. A randomized controlled trial of EEG-based motor imagery brain–computer interface robotic rehabilitation for stroke. Clin EEG Neurosci. 2014. doi:10.1177/1550059414522229.

  8. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods. 2008;167(1):115–25.

    Article  PubMed  Google Scholar 

  9. Kukleta M, Lamarche M. Steep early negative slopes can be demonstrated in pre-movement bereitschaftspotential. Clin Neurophysiol. 2001;112(9):1642–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pineda JA, Allison BZ, Vankov A. The effects of self-movement, observation, and imagination on \(\mu\) rhythms and readiness potentials (rp’s): toward a brain-computer interface (BCI). IEEE Trans Rehabil Eng. 2000;8(2):219–22.

    Article  CAS  PubMed  Google Scholar 

  11. Pfurtscheller G, da Silva FHL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

    Article  CAS  PubMed  Google Scholar 

  12. Liao X, Yao D, Wu D, Li C. Combining spatial filters for the classification of single-trial eeg in a finger movement task. IEEE Trans Biomed Eng. 2007;54(5):821–31.

    Article  PubMed  Google Scholar 

  13. Wang H, Xu J. Local discriminative spatial patterns for movement-related potentials-based eeg classification. Biomed Signal Process. 2011;6(4):427–31.

    Article  Google Scholar 

  14. Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, et al. Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage. 1999;10(6):658–65.

    Article  CAS  PubMed  Google Scholar 

  15. Dornhege G, Blankertz B, Curio G, Müller KR. Combining features for bci. NIPS 2002;1115–1122.

  16. Tang Q, Wang J, Wang H. L1-norm based discriminative spatial pattern for single-trial eeg classification. Biomed Signal Process. 2014;10:313–21.

    Article  Google Scholar 

  17. Vapnik VN. Statistical learning theory, vol. 2. New York: Wiley; 1998.

    Google Scholar 

  18. Übeyli ED. Combined neural network model employing wavelet coefficients for EEG signals classification. Digit Signal Process. 2009;19(2):297–308.

    Article  Google Scholar 

  19. Güler I, Übeyli ED. Multiclass support vector machines for EEG-signals classification. IEEE Trans Inf Technol Biomed. 2007;11(2):117–26.

    Article  PubMed  Google Scholar 

  20. Nassif AB, Ho D, Capretz LF. Towards an early software estimation using log-linear regression and a multilayer perceptron model. J Syst Softw. 2013;86(1):144–60.

    Article  Google Scholar 

  21. Christoforou C, Haralick R, Sajda P, Parra LC. Second-order bilinear discriminant analysis. J Mach Learn Res. 2010;11:665–85.

    Google Scholar 

  22. Tomioka R, Müller KR. A regularized discriminative framework for eeg analysis with application to brain–computer interface. NeuroImage. 2010;49(1):415–32.

    Article  PubMed  Google Scholar 

  23. Dyrholm M, Christoforou C, Parra LC. Bilinear discriminant component analysis. J Mach Learn Res. 2007;8:1097–111.

    Google Scholar 

  24. Lu J, Xie K, McFarland DJ. Adaptive spatio-temporal filtering for movementrelated potentials in EEG based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2014;11:313–21.

    Google Scholar 

  25. Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural process Lett. 1999;9(3):293–300.

    Article  Google Scholar 

  26. Schölkopf B, Smola AJ. Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge: MIT press; 2001.

    Google Scholar 

  27. Cortes C, Vapnik VN. Support-vector networks. Mach learn. 1995;20(3):273–97.

    Google Scholar 

  28. Lu J, Xie K, Tang Z. Extracting nonlinear correlation for the classification of single-trial EEG in a finger movement task. In: International Joint Conference on Neural Networks (IJCNN) 2014;1375–1379.

  29. Blankertz B, Curio G, Müller KR. Classifying single trial EEG: towards brain computer interfacing. NIPS. 2012;1:157–64.

    Google Scholar 

  30. Blankertz B, Müller KR, Curio G, Vaughan TM, Schalk G, Wolpaw J, et al. The BCI Competition 2003: progress and perspectives in detection and discrimination of eeg single trials. IEEE Trans Biomed Eng. 2004;51(6):1044–51.

    Article  PubMed  Google Scholar 

  31. Lv J, Wang L. Semi-supervised temporal-spatial filter based on mrp for brain-computer interfaces. In: IEEE International Conference on Information and Automation (ICIA) 2011;519–522.

  32. Wang Y, Zhang Z, Li Y, Gao X, Gao S, Yang F. BCI competition 2003-data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans Biomed Eng. 2004;51(6):1081–6.

    Article  PubMed  Google Scholar 

  33. Byvatov E, Fechner U, Sadowski J, Schneider G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci. 2003;43:1882–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and anonymous reviewers who have given many valuable comments. This work was supported by the National Natural Science Foundation of China under Grant 61304140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Lu, J. & Wang, P. A Unified Biologically-Inspired Prediction Framework for Classification of Movement-Related Potentials Based on a Logistic Regression Model. Cogn Comput 7, 731–739 (2015). https://doi.org/10.1007/s12559-015-9360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-015-9360-x

Keywords

Navigation