Skip to main content

Advertisement

Log in

Invasive and non-invasive therapies for Alzheimer’s disease and other amyloidosis

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Advancements in medical science have facilitated in extending human lives. The increased life expectancy, though, has come at a cost. The cases of an aging population suffering from degenerative diseases like Alzheimer’s disease (AD) are presently at its all-time high. Amyloidosis disorders such as AD are triggered by an abnormal transition of soluble proteins into their highly ordered aggregated forms. The landscape of amyloidosis treatment remains unchanged, and there is no cure for such disorders. However, an increased understanding of the mechanism of amyloid self-assembly has given hope for a possible therapeutic solution. In this review, we will discuss the current state of molecular and non-molecular options for therapeutic intervention of amyloidosis. We highlight the efficacy of non-invasive physical therapies as possible alternatives to their molecular counterparts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali TB, Schleret TR, Reilly BM, Chen WY, Abagyan R (2015) Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLoS One 10:e0144337

    PubMed  PubMed Central  Google Scholar 

  • Andreadou I et al (2006) The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J Nutr 136:2213–2219

    CAS  PubMed  Google Scholar 

  • Aprile FA, Sormanni P, Vendruscolo M (2015) A rational design strategy for the selective activity enhancement of a molecular chaperone toward a target substrate. Biochemistry 54:5103–5112

    CAS  PubMed  Google Scholar 

  • Avila CL et al (2017) Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 9:501–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumketner A (2014) Electric field as a disaggregating agent for amyloid fibrils. J Phys Chem B 118:14578–14589

    CAS  PubMed  Google Scholar 

  • Behrens S et al (2018) Use of FDA approved medications for Alzheimer’s disease in mild dementia is associated with reduced informal costs of care. Int Psychogeriatr 30:1499–1507

    PubMed  PubMed Central  Google Scholar 

  • Bekard I, Dunstan DE (2014) Electric field induced changes in protein conformation Soft Matter 10:431–437

  • Belluti F, Rampa A, Gobbi S, Bisi A (2013) Small-molecule inhibitors/modulators of amyloid-β peptide aggregation and toxicity for the treatment of Alzheimer’s disease: a patent review (2010–2012). Expert Opin Ther Patents 23:581–596

    CAS  Google Scholar 

  • Berg JM (2002) John L TYMOCZKO a Lubert STRYER. Biochemistry, vol c2012. WH Freeman and Company, New York, p xxxii

    Google Scholar 

  • Biasutti M, Dufour N, Ferroud C, Dab W, Temime L (2012) Cost-effectiveness of magnetic resonance imaging with a new contrast agent for the early diagnosis of Alzheimer’s disease. PLoS One 7:e35559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K (2010) Biomarkers in Alzheimer’s disease drug development. Nat Med 16:1218

    CAS  PubMed  Google Scholar 

  • Boggio PS, Khoury LP, Martins DC, Martins OE, De Macedo E, Fregni F (2009) Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry 80:444–447

    CAS  PubMed  Google Scholar 

  • Bohrmann B et al (2012) Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis 28:49–69

    CAS  PubMed  Google Scholar 

  • Bongiovanni MN, Aprile FA, Sormanni P, Vendruscolo M (2018) A rationally designed Hsp70 variant rescues the aggregation-associated toxicity of human IAPP in cultured pancreatic islet β-cells. Int J Mol Sci 19:1443

    PubMed Central  Google Scholar 

  • Braak H, Braak E (1990) Alzheimer’s disease: striatal amyloid deposits and neurofibrillary changes. J Neuropathol Exp Neurol 49:215–224

    CAS  PubMed  Google Scholar 

  • Buss SS, Fried PJ, Pascual-Leone A (2019) Therapeutic noninvasive brain stimulation in Alzheimer’s disease and related dementias. Curr Opin Neurol 32:292–304

    PubMed  PubMed Central  Google Scholar 

  • Carpentier A et al (2016) Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8:343re342–343re342

  • Carvajal FJ, Mattison HA, Cerpa W (2016) Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast. https://doi.org/10.1155/2016/2701526

  • Chakraborty C, Nandi S, Jana S (2005) Prion disease: a deadly disease for protein misfolding. Curr Pharm Biotechnol 6:167–177

    CAS  PubMed  Google Scholar 

  • Chen G-F, Xu T-H, Yan Y, Zhou Y-R, Jiang Y, Melcher K, Xu HE (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng B, Gong H, Xiao H, Petersen RB, Zheng L, Huang K (2013) Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta Gen Subj 1830:4860–4871

    CAS  Google Scholar 

  • Cisek K, Cooper GL, Huseby CJ, Kuret J (2014) Structure and mechanism of action of tau aggregation inhibitors. Curr Alzheimer Res 11:918–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespi GA, Hermans SJ, Parker MW, Miles LA (2015) Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies. Sci Rep 5:9649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubinkova V, Valachova B, Uhrinova I, Brezovakova V, Smolek T, Jadhav S, Zilka N (2018) Alternative hypotheses related to Alzheimer’s disease. Bratisl Lek Listy 119:210–216

    CAS  PubMed  Google Scholar 

  • De Taboada L et al (2011) Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J Alzheimers Dis 23:521–535

    PubMed  Google Scholar 

  • Deardorff WJ, Grossberg GT (2016) A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Dev Ther 10:3267

    CAS  Google Scholar 

  • Diekmann S, Hillen W, Jung M, Wells RD, Pörschke D (1982) Electric properties and structure of DNA restriction fragments from measurements of the electric dichroism. Biophys Chem 15:157–167

    CAS  PubMed  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    CAS  PubMed  Google Scholar 

  • Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356:133–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol. Eds Ellis J, Klein WH, Mu X (Associated Press, New York) 15:3–16. https://doi.org/10.1016/j.semcdb.2003.12.008

  • Doig AJ, Derreumaux P (2015) Inhibition of protein aggregation and amyloid formation by small molecules. Curr Opin Struct Biol 30:50–56

    CAS  PubMed  Google Scholar 

  • Dolan PJ, Zago W (2018) Passive Immunotherapy in Alzheimer’s Disease. In: Dorszewska J, Kozubski W (eds) Alzheimer’s Disease ‐ The 21st Century Challenge. London: IntechOpen, London. https://doi.org/10.5772/intechopen.76299

  • Fahrenholz F, Postina R (2006) α-Secretase activation—an approach to Alzheimer’s disease therapy. Neurodegener Dis 3:255–261

    CAS  PubMed  Google Scholar 

  • Fleisher AS et al (2008) Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch Neurol 65:1031–1038

    PubMed  PubMed Central  Google Scholar 

  • Fluhrer R et al (2003) Identification of a β-secretase activity, which truncates amyloid β-peptide after its presenilin-dependent generation. J Biol Chem 278:5531–5538

    CAS  PubMed  Google Scholar 

  • Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat Rev Neurol 3:383–393. https://doi.org/10.1038/ncpneuro0530

    Article  Google Scholar 

  • Freitas C, Mondragón-Llorca H, Pascual-Leone A (2011) Noninvasive brain stimulation in Alzheimer’s disease: systematic review and perspectives for the future. Exp Gerontol 46:611–627

    PubMed  PubMed Central  Google Scholar 

  • Frenkel-Pinter M, Richman M, Belostozky A, Abu-Mokh A, Gazit E, Rahimipour S, Segal D (2016) Selective inhibition of aggregation and toxicity of a tau-derived peptide using its glycosylated analogues. Chem Eur J 22:5945–5952

    CAS  PubMed  Google Scholar 

  • Friedhoff P, Biernat J, Heberle J, Mandelkow E, Mandelkow E (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306) VQIVYK (311)) forming beta structure. Proc Natl Acad Sci U S A 97:5129–5134

    PubMed  PubMed Central  Google Scholar 

  • Fu Z, Aucoin D, Ahmed M, Ziliox M, Van Nostrand WE, Smith SO (2014) Capping of Aβ42 oligomers by small molecule inhibitors. Biochemistry 53:7893–7903

    CAS  PubMed  Google Scholar 

  • Godyń J, Jończyk J, Panek D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68:127–138

    PubMed  Google Scholar 

  • Gonsalvez I, Baror R, Fried P, Santarnecchi E, Pascual-Leone A (2017) Therapeutic noninvasive brain stimulation in Alzheimer’s disease. Curr Alzheimer Res 14:362–376

    CAS  PubMed  Google Scholar 

  • Goyal D, Shuaib S, Mann S, Goyal B (2017) Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: potential therapeutics of Alzheimer’s disease ACS combinatorial. Science 19:55–80

    CAS  Google Scholar 

  • Granic I et al (2010) Calpain inhibition prevents amyloid-β-induced neurodegeneration and associated behavioral dysfunction in rats. Neuropharmacology 59:334–342

    CAS  PubMed  Google Scholar 

  • Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genomics Hum Genet 7:103–124

    CAS  PubMed  Google Scholar 

  • Grüninger F (2015) Invited review: drug development for tauopathies. Neuropathol Appl Neurobiol 41:81–96

    PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101

    CAS  PubMed  Google Scholar 

  • Hampel H, Goernitz A, Buerger K (2003) Advances in the development of biomarkers for Alzheimer’s disease: from CSF total tau and Aβ1–42 proteins to phosphorylated tau protein. Brain Res Bull 61:243–253

    CAS  PubMed  Google Scholar 

  • Hampel H et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9:560

    CAS  PubMed  Google Scholar 

  • Hansen N (2012) Action mechanisms of transcranial direct current stimulation in Alzheimer’s disease and memory loss. Front Psychiatry 3:48

    PubMed  PubMed Central  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–186

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • Hatch RJ, Leinenga G, Götz J (2016) Scanning ultrasound (SUS) causes no changes to neuronal excitability and prevents age-related reductions in hippocampal CA1 dendritic structure in wild-type mice. PLoS One 11:e0164278

    PubMed  PubMed Central  Google Scholar 

  • Henstridge CM, Spires-Jones TL (2018) Modeling Alzheimer’s disease brains in vitro. Nat Neurosci 21:899

    CAS  PubMed  Google Scholar 

  • Honig LS et al (2018) Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 378:321–330

    CAS  PubMed  Google Scholar 

  • Huang F et al (2014) Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-sshell polymeric micelles. Angew Chem 126:9131–9136

    Google Scholar 

  • Hughes E, Burke RM, Doig AJ (2000) Inhibition of toxicity in the β-amyloid peptide fragment β-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J Biol Chem 275:25109–25115

    CAS  PubMed  Google Scholar 

  • Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67

    CAS  PubMed  Google Scholar 

  • Johnstone DM, Moro C, Stone J, Benabid A-L, Mitrofanis J (2016) Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front Neurosci 9:500

    PubMed  PubMed Central  Google Scholar 

  • Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O (2019) Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy. Biophys Rev 11:1–25. https://doi.org/10.1007/s12551-019-00606-2

    Article  CAS  Google Scholar 

  • Kametani F, Hasegawa M (2018) Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 12:25

    PubMed  PubMed Central  Google Scholar 

  • Kelly CM, Northey T, Ryan K, Brooks BR, Kholkin AL, Rodriguez BJ, Buchete N-V (2015) Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field. Biophys Chem 196:16–24

    CAS  PubMed  Google Scholar 

  • King A (2018) The search for better animal models of Alzheimer’s disease. Nature 559:S13–S15

    CAS  PubMed  Google Scholar 

  • Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384

    CAS  PubMed  Google Scholar 

  • Kokkoni N, Stott K, Amijee H, Mason JM, Doig AJ (2006) N-methylated peptide inhibitors of β-amyloid aggregation and toxicity. Optimization of the inhibitor structure. Biochemistry 45:9906–9918

    CAS  PubMed  Google Scholar 

  • Konofagou EE (2012) Optimization of the ultrasound-induced blood-brain barrier opening. Theranostics 2:1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • KoSIK KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci 83:4044–4048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotha S, Goyal D, Chavan AS (2013) Diversity-oriented approaches to unusual α-amino acids and peptides: step economy, atom economy, redox economy, and beyond. J Org Chem 78:12288–12313

    CAS  PubMed  Google Scholar 

  • Kulikova AA, Makarov AA, Kozin S (2015) Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol Biol 49:217–230

    CAS  Google Scholar 

  • Ladiwala ARA, Dordick JS, Tessier PM (2011) Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways. J Biol Chem 286:3209–3218

    CAS  PubMed  Google Scholar 

  • Lee JS, Lee BI, Park CB (2015) Photo-induced inhibition of Alzheimer’s β-amyloid aggregation in vitro by rose bengal. Biomaterials 38:43–49

    CAS  PubMed  Google Scholar 

  • Leinenga G, Götz J (2015) Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med 7:278ra233-278ra233

    Google Scholar 

  • Lichtenthaler SF (2011) Alpha-secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. J Neurochem 116:10–21

    CAS  PubMed  Google Scholar 

  • Lin Y-C, Wang Y-P (2018) Status of noninvasive brain stimulation in the therapy of Alzheimer’s disease. Chin Med J 131:2899

    PubMed  PubMed Central  Google Scholar 

  • Lu Y, Shi X-F, Salsbury FR Jr, Derreumaux P (2018) Influence of electric field on the amyloid-β (29-42) peptides embedded in a membrane bilayer. J Chem Phys 148:045105

    PubMed  Google Scholar 

  • Lugli F, Toschi F, Biscarini F, Zerbetto F (2010) Electric field effects on short fibrils of Aβ amyloid peptides. J Chem Theory Comput 6:3516–3526

    CAS  PubMed  Google Scholar 

  • Ma FH, Li C, Liu Y, Shi L (2020) Mimicking molecular chaperones to regulate protein folding. Adv Mater 32:1805945

    CAS  Google Scholar 

  • Manavalan P, Momany FA (1980) Conformational energy studies on N-methylated analogs of thyrotropin releasing hormone, enkephalin, and luteinizing hormone-releasing hormone. Biopolymers 19:1943–1973

    CAS  PubMed  Google Scholar 

  • Mandelkow E-M, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    PubMed  PubMed Central  Google Scholar 

  • Manenti R, Cotelli M, Robertson IH, Miniussi C (2012) Transcranial brain stimulation studies of episodic memory in young adults, elderly adults and individuals with memory dysfunction: a review. Brain Stimul 5:103–109

    PubMed  Google Scholar 

  • Martis B et al (2003) Neurocognitive effects of repetitive transcranial magnetic stimulation in severe major depression. Clin Neurophysiol 114:1125–1132

    PubMed  Google Scholar 

  • Matthews K (2006) Tau protein abnormalities correlate with the severity of dementia in Alzheimer’s disease. Nat Rev Neurol 2:178

    Google Scholar 

  • Minicozzi V et al (2014) Computational and experimental studies on β-sheet breakers targeting Aβ1–40 fibrils. J Biol Chem 289:11242–11252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty B (2017) A review on current therapies and challenges in Alzheimer’s disease and role of Indian spices in its treatment as a futuristic approach. Neurol Clin Ther J 1:2

    Google Scholar 

  • Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. In: Suppl Clin Neurophysiol 56:255–276. https://doi.org/10.1016/S1567-424X(09)70230-2

  • O’Nuallain B et al (2008) Human plasma contains cross-reactive Aβ conformer-specific IgG antibodies. Biochemistry 47:12254–12256

    PubMed  Google Scholar 

  • Ojeda-May P, Garcia ME (2010) Electric field-driven disruption of a native β-sheet protein conformation and generation of a helix-structure. Biophys J 99:595–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey NK, Mitra S, Chakraborty M, Ghosh S, Sen S, Dasgupta S, DasGupta S (2014) Disruption of human serum albumin fibrils by a static electric field. J Phys D Appl Phys 47:305401

    Google Scholar 

  • Pandey G et al (2017) Modulation of peptide based nano-assemblies with electric and magnetic fields. Sci Rep 7:2726. https://doi.org/10.1038/s41598-017-02609-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey G, Morla S, Nemade HB, Kumar S, Ramakrishnan V (2019) Modulation of aggregation with an electric field; scientific roadmap for a potential non-invasive therapy against tauopathies. RSC Adv 9:4744–4750

  • Pandey G, Morla S, Kumar S, Ramakrishnan V (2020) Modulation of tau protein aggregation using ‘Trojan’ sequences. Biochim Biophys Acta Gen Subj 129569. https://doi.org/10.1016/j.bbagen.2020.129569

  • Panza F et al (2012) Immunotherapy for Alzheimer’s disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 4:213–238

    CAS  PubMed  Google Scholar 

  • Panza F et al (2016) Tau-based therapeutics for Alzheimer’s disease: active and passive immunotherapy. Immunotherapy 8:1119–1134

    CAS  PubMed  Google Scholar 

  • Paula VJR, Guimarães FM, Diniz BS, Forlenza OV (2009) Neurobiological pathways to Alzheimer’s disease: amyloid-beta, TAU protein or both? Dement Neuropsychol 3:188–194

    PubMed  PubMed Central  Google Scholar 

  • Permanne B et al (2002) Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a β-sheet breaker peptide. FASEB J 16:860–862

    CAS  PubMed  Google Scholar 

  • Pörschke D (1987) Electric, optical and hydrodynamic parameters of lac repressor from measurements of the electric dichroism High permanent dipole moment associated with. Biophys Chem 28:137–147. https://doi.org/10.1016/0301-4622(87)80083-2

  • Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M(2015) World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. Alzheimer's Disease International, London

    Google Scholar 

  • Purushothuman S, Johnstone DM, Nandasena C, Mitrofanis J, Stone J (2014) Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex—evidence from two transgenic mouse models. Alzheimers Res Ther 6:2

    PubMed  PubMed Central  Google Scholar 

  • Purushothuman S, Johnstone DM, Nandasena C, van Eersel J, Ittner LM, Mitrofanis J, Stone J (2015) Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia. Neurosci Lett 591:155–159

    CAS  PubMed  Google Scholar 

  • Qiu T, Liu Q, Chen YX, Zhao YF, Li YM (2015) Aβ42 and Aβ40: similarities and differences. J Pept Sci 21:522–529

    CAS  PubMed  Google Scholar 

  • Qu A, Huang F, Li A, Yang H, Zhou H, Long J, Shi L (2017) The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of beta-amyloid fibrils and reducing consequent toxicity. Chem Commun 53:1289–1292

    CAS  Google Scholar 

  • Rajasekhar K, Chakrabarti M, Govindaraju T (2015) Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem Commun 51:13434–13450

    CAS  Google Scholar 

  • Richard T et al (2011) Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg Med Chem 19:3152–3155

    CAS  PubMed  Google Scholar 

  • Rodda J, Carter J (2012) Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ 344:e2986

    PubMed  Google Scholar 

  • Rossi S (2006) Australian medicines handbook. Australian Medicines Handbook, Adelaide, pp 2–3

    Google Scholar 

  • Saikia J et al (2019) Electric field disruption of amyloid aggregation: potential noninvasive therapy for Alzheimer’s disease. ACS Chem Neurosci 10:2250–2262

    CAS  PubMed  Google Scholar 

  • Schaeffer EL, Figueiro M, Gattaz WF (2011) Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics 66:45–54

    PubMed  PubMed Central  Google Scholar 

  • Scherzer-Attali R et al (2012) Naphthoquinone-tyrptophan reduces neurotoxic Aβ* 56 levels and improves cognition in Alzheimer’s disease animal model. Neurobiol Dis 46:663–672

    CAS  PubMed  Google Scholar 

  • Seidler P et al (2018) Structure-based inhibitors of tau aggregation. Nat Chem 10:170

    CAS  PubMed  Google Scholar 

  • Sen S, Chakraborty M, Goley S, Dasgupta S, Das Gupta S (2017) Fibrillar disruption by AC electric field induced oscillation: a case study with human serum albumin. Biophys Chem 226:23–33

    CAS  PubMed  Google Scholar 

  • Sevigny J et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50

    CAS  PubMed  Google Scholar 

  • Shao Z-Q (2015) Comparison of the efficacy of four cholinesterase inhibitors in combination with memantine for the treatment of Alzheimer’s disease. Int J Clin Exp Med 8:2944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurdsson EM (2014) Tau immunotherapy and imaging. Neurodegener Dis 13:103–106

    CAS  PubMed  Google Scholar 

  • Sipe JD, Cohen AS (2000) History of the amyloid fibril. J Struct Biol 130:88–98

    CAS  PubMed  Google Scholar 

  • Sommer AP et al (2012) 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: basis for treatment of Alzheimer’s disease? Photomed Laser Surg 30:54–60

    PubMed  Google Scholar 

  • Sorrentino V et al (2017) Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552:187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart KL, Radford SE (2017) Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys Rev 9:405–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing! Age Ageing 35:336–338

    CAS  PubMed  Google Scholar 

  • Takahashi T, Mihara H (2008) Peptide and protein mimetics inhibiting amyloid β-peptide aggregation. Acc Chem Res 41:1309–1318

    CAS  PubMed  Google Scholar 

  • Tjernberg LO et al (1996) Arrest of-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548

    CAS  PubMed  Google Scholar 

  • Tucker S et al (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43:575–588

    CAS  PubMed  Google Scholar 

  • Ursini F, Davies KJ, Maiorino M, Parasassi T, Sevanian A (2002) Atherosclerosis: another protein misfolding disease? Trends Mol Med 8:370–374

    CAS  PubMed  Google Scholar 

  • Visioli F, Bellosta S, Galli C (1998) Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci 62:541–546

    CAS  PubMed  Google Scholar 

  • Visioli F, Poli A, Gall C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75

    CAS  PubMed  Google Scholar 

  • Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A (2007) Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35:1113–1124

    PubMed  Google Scholar 

  • Wilcock GK et al (2018) Potential of low dose leuco-methylthioninium bis (hydromethanesulphonate)(LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J Alzheimers Dis 61:435–457

    CAS  PubMed  Google Scholar 

  • Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain-and loss-of-function in neurodegenerative diseases. EMBO J 27:336–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wischik CM, Harrington CR, Storey JM (2014) Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 88:529–539

    CAS  PubMed  Google Scholar 

  • Xu D, Phillips JC, Schulten K (1996) Protein response to external electric fields: relaxation, hysteresis, and echo. J Phys Chem 100:12108–12121

    CAS  Google Scholar 

  • Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6:19–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Hu C, Kong Q, Luo R, Wang Y (2019) Peptide-/drug-directed self-assembly of hybrid polyurethane hydrogels for wound healing ACS. Appl Mater Interfaces 11:37147–37155

    CAS  Google Scholar 

  • Zhao W, Yang R (2009) Experimental study on conformational changes of lysozyme in solution induced by pulsed electric field and thermal stresses. J Phys Chem B 114:503–510

    Google Scholar 

  • Zhao W, Wang J, Ho L, Ono K, Teplow DB, Pasinetti GM (2009) Identification of antihypertensive drugs which inhibit amyloid-β protein oligomerization. J Alzheimers Dis 16:49–57

    CAS  PubMed  Google Scholar 

  • Zheng Z, Jing B, Sorci M, Belfort G, Zhu Y (2015) Accelerated insulin aggregation under alternating current electric fields: relevance to amyloid kinetics. Biomicrofluidics 9:044123

    PubMed  PubMed Central  Google Scholar 

  • Zhu B et al (2017) ER-associated degradation regulates Alzheimer’s amyloid pathology and memory function by modulating γ-secretase activity. Nat Commun 8:1472

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study is financially supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy, Govt. of India (35/14/07/2017-BRNS) and Department of Biotechnology, Govt. of India (BT/565/NE/U-Excel/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibin Ramakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval for research involving human participants and/or animals and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, G., Ramakrishnan, V. Invasive and non-invasive therapies for Alzheimer’s disease and other amyloidosis. Biophys Rev 12, 1175–1186 (2020). https://doi.org/10.1007/s12551-020-00752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00752-y

Keywords

Navigation