Skip to main content
Log in

Biophysical approaches in the study of biomembrane solubilization: quantitative assessment and the role of lateral inhomogeneity

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Re sat—the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ASB:

aminosulfobetaines

C:

Cholate

CB:

Cascade blue – Dextran

CHAPS:

Cholamido propyl dimethylammonio propanesulfonate

chol:

Cholesterol

cmc:

Critical micelle concentration

Cprot :

Detergent concentration for maximum protection against hemolysis, at hyposmotic condition

Csat (Csol):

Detergent concentration for the onset (complete) membrane solubilization

DC:

Desoxycholate

DRM:

Detergent resistant membrane fractions

GC:

Glycocholate

GD:

Glycochenodeoxycholate

GUVs:

Giant unilamellar vesicles

HLB:

Hydrophilic-lipophilic balance

Ht:

Hematocrit

LC:

Lithocholate

Ld :

Liquid disordered phase

Lo :

Liquid ordered phase

LUV:

Large unilamellar vesicles

POPC:

Palmitoyl oleoyl phosphatidylcholine

PTS:

Pyrenetetrasulphonic acid

Re sat (Re sol):

Effective detergent/lipid molar ratio for the onset (complete) solubilization

SASL:

Doxyl stearic acid spin label

SM:

Sphingomyelin

SRB:

Sulforhodamine B

TC:

Taurocholate

TD:

Taurochenodeoxycholate

TX-100:

Triton X-100

UD:

Ursodeoxycholate

VL:

Viologen

References

  • Ahyayauch H, Collado MI, Goñi FM, Lichtenberg D (2009) Cholesterol reverts TX-100 preferential solubilization of sphingomyelin over phosphatidylcholine: A 31P-NMR study. FEBS Lett 583:2859–2864

    Article  CAS  PubMed  Google Scholar 

  • Ahyayauch H, Bennouna M, Alonso A, Goñi FM (2010) Detergent effects on membranes at subsolubilizing concentrations: Transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena. Langmuir 26:7307–7313

    Article  CAS  PubMed  Google Scholar 

  • Ahyayauch H, Collado M, Alonso A, Goñi FM (2012) Lipid bilayers in the gel phase become saturated by triton X-100 at lower surfactant concentrations than those in the fluid phase. Biophys J 102:2510–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/ cholesterol phase diagram: Boundaries and composition of lipid rafts. Biophys J 85:2406–2416

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida RFM, Loura LMS, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: A time-resolved fluorescence resonance transfer study. J Mol Biol 346:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Aranda S, Riske KA, Lipowsky R, Dimova R (2008) Morphological transitions of vesicles induced by alternating electric fields. Biophys J 95:L19–L21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnulphi C, Sot J, García-Pacios M, Arrondo JL, Alonso A, Goñi FM (2007) Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: Effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine. Biophys J 93:3504–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagatolli LA (2003) Direct observation of lipid domains in free standing bilayers: From simple to complex lipid mixtures. Chem Phys Lipids 122:137–145

    Article  CAS  PubMed  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Campos DDP, Cassu SN, Garcia RBR, Queiroz AHAS, RFB G, Kawachi EY (2012) SAXS and DSC evaluation of interactions between H2O and Renex-100. Quim Nova 35:355–359

    Article  Google Scholar 

  • Caritá AC, Mattei B, Domingues CC, de Paula E, Riske KA (2017) Effect of triton X-100 on raft-like lipid mixtures: Phase separation and selective Solubilization. Langmuir. https://doi.org/10.1021/acs.langmuir.7b01134

  • Casadei BR, Domingues CC, de Paula E, Riske KA (2014a) Direct visualization of the action of triton X-100 on giant vesicles of erythrocyte membrane lipids. Biophys J 106:2417–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casadei BR, Carvalho PO, Riske K, Barbosa RM, de Paula E, Domingues CC (2014b) Brij detergents reveal new aspects of membrane microdomain in erythrocytes. Mol Membr Biol 31:195–205

    Article  CAS  PubMed  Google Scholar 

  • Ciana A, Balduini C, Minetti G (2005) Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton. J Biosci 30:317–328

    Article  CAS  PubMed  Google Scholar 

  • Ciana A, Achilli C, Balduini C, Minetti G (2011) On the association of lipid rafts to the spectrin skeleton in human erythrocytes. Biochim Biophys Acta 1808:183–190

    Article  CAS  PubMed  Google Scholar 

  • Ciana A, Achilli C, Minetti G (2014) Membrane rafts of the human red blood cell. Mol Membr Biol 31:47–57

    Article  CAS  PubMed  Google Scholar 

  • Crepaldi Domingues C, Ciana A, Buttafava A, Balduini C, de Paula E, Minetti G (2009) Resistance of human erythrocyte membranes to triton X-100 and C12E8. J Membr Biol 227:39–48

    Article  CAS  PubMed  Google Scholar 

  • de la Maza A, Parra JL (1994) Vesicle-micelle structural transition of phosphatidylcholine bilayers and triton X-100. Biochem J 303:907–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Domingues CC, Malheiros SVP, de Paula E (2008) Solubilization of human erythrocyte membranes by ASB detergents. Braz J Med Biol Res 41:758–764

    Article  CAS  PubMed  Google Scholar 

  • Domingues CC, Ciana A, Buttafava A, Casadei B, Balduini C, de Paula E, Minetti G (2010) Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes. J Membr Biol 234:195–205

    Article  CAS  PubMed  Google Scholar 

  • Duwe HP, Sackmann E (1990) Bending elasticity and thermalexcitations of lipid bilayer vesicles: modulation by solutes. Phys Acta 163:410–428

  • El Kirat K, Morandat S (2007) Cholesterol modulation of membrane resistance to triton X-100 explored by atomic force microscopy. Biochim Biophys Acta 1768:2300–2309

    Article  PubMed  CAS  Google Scholar 

  • Galembeck E, Alonso A, Meirelles NC (1998) Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants. Chem Biol Interact 113:91–103

    Article  CAS  PubMed  Google Scholar 

  • Gandhi VM, Cherian KM (2000) Red cell haemolysis test as an in vitro approach for the assessment of toxicity of karanja oil. Toxicol in Vitro 14:513–516

    Article  CAS  PubMed  Google Scholar 

  • Giocondi MC, Vié V, Lesniewska E, Goudonnet JP, Le Grimellec C (2000) In situ imaging of detergent-resistant membranes by atomic force microscopy. J Struct Biol 131:38–43

    Article  CAS  PubMed  Google Scholar 

  • Goñi FM (2014) The basic structure and dynamics of cell membranes: An update of the singer–Nicolson model. Biochim Biophys Acta 1838:1467–1476

    Article  PubMed  CAS  Google Scholar 

  • Griffin WC (1949) Classification of surface-active agents by HLB. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  • Hägerstrand H, Isomaa B (1991) Amphiphile-induced antihaemolysis is not causally related to shape changes and vesiculation. Chem Biol Interact 79:335–347

    Article  PubMed  Google Scholar 

  • Hait SK, Moulik SP (2001) Determination of critical micelle concentration (cmc) of nonionic surfactants by donor–acceptor interaction with iodine and correlation of cmc with hydrophile–lipophile balance and other parameters of the surfactants. J Surfactant Deterg 4:303–309

    Article  CAS  Google Scholar 

  • Halling KK, Ramstedt B, Nystrom JH, Slotte P, Nyholm TKM (2008) Cholesterol interactions with fluid-phase phospholipids: Effect on the lateral organization of the bilayer. Biophys J 95:3861–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock JF (2006) Lipid rafts: Contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heberle FA, Petruzielo RS, Pan J, Drazba P, Kučerka N, Standaert RF, Feigenson GW, Katsaras J (2013) Bilayer thickness mismatch controls domain size in model membranes. J Am Chem Soc 135:6853–6859

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H (2002) Triton promotes domain formation in lipid raft mixture. Biophys J 83:2693–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerklotz H (2008) Interactions of surfactants with lipid membranes. Q Rev Biophys 41:205–264

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Seelig J (2000) Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. Biophys J 78:2435–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerklotz H, Szadkowska H, Anderson T, Seelig J (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton. J Mol Biol 329:793–799

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    Article  CAS  PubMed  Google Scholar 

  • Hjelmeland LM (1990) Solubilization of native membrane proteins. Methods Enzymol 182:253–264

    Article  CAS  PubMed  Google Scholar 

  • Ingelmo-Torres M, Gaus K, Herms A, González-Moreno E, Kassan A, Bosch M, Grewal T, Tebar F, Enrich C, Pol A (2009) Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane. Biochem J 420:373–381

    Article  CAS  PubMed  Google Scholar 

  • Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    Article  CAS  PubMed  Google Scholar 

  • Isomaa B, Hägerstrand H (1988) Effects of nonionic amphiphiles at sublytic concentrations on the erythrocyte membrane. Cell Biochem Funct 6:183–190

    Article  CAS  PubMed  Google Scholar 

  • Isomaa B, Hägerstrand H, Paatero G, Engblom AC (1986) Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes. Biochim Biophys Acta 860:510–524

    Article  CAS  PubMed  Google Scholar 

  • Jones MN (1999) Surfactants in membrane solubilisation. Int J Pharm 177:137–159

    Article  CAS  PubMed  Google Scholar 

  • Kamata K, Manno S, Ozaki M, Takakuwa Y (2008) Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction. Am J Hematol 83:371–375

    Article  CAS  PubMed  Google Scholar 

  • Koumanov KS, Tessier C, Momchilova AB, Rainteau D, Wolf C, Quinn PJ (2005) Comparative lipid analysis and structure of detergentresistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochem Biophys 434:150–158

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, le Maire M, Møller JV (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 75:2932–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara T K (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36:604–615

  • Lasch J (1995) Interaction of detergents with lipid vesicles. Biochim Biophys Acta 1241:269–292

    Article  PubMed  Google Scholar 

  • Le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  PubMed  Google Scholar 

  • Leidl K, Liebisch G, Richter D, Schmitz G (2008) Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta 1781:655–664

  • Levental I, Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol 428:4749–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Momsen MM, Smaby JM, Brockman HL, Brown RE (2001) Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins. Biochemistry 40:5954–5963

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg D (1985) Characterization of the solubilization of lipid bilayers by surfactants. Biochim Biophys Acta 821:470–478

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg D, Opatowski E, Kozlov MM (2000) Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim Biophys Acta 1508:1–19

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg D, Goni F, Heerklotz H (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30:430–436

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg D, Ahyaauch H, Goñi FM (2013) The mechanism of detergent solubilization of lipid bilayers. Biophys J 105:289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linke D (2009) Detergents: an overview. Methods Enzymol 463:603–617

    Article  CAS  PubMed  Google Scholar 

  • Maggio B, Fanani ML, Rosetti CM, Wilke N (2006) Biophysics of sphingolipids II. Glycosphingolipids: An assortment of multiple structural information transducers at the membrane surface. Biochim Biophys Acta 1758:1922–1944

    Article  CAS  PubMed  Google Scholar 

  • Malheiros SVP, Meirelles NC, de Paula E (2000) Pathways involved in trifluoperazine-, dibucaine-and praziquantel-induced hemolysis. Biophys Chem 83:89–100

    Article  CAS  PubMed  Google Scholar 

  • Mattei B, França ADC, Riske KA (2015) Solubilization of binary lipid mixtures by the detergent triton X-100: The role of cholesterol. Langmuir 31:378–386

    Article  CAS  PubMed  Google Scholar 

  • Mattei B, Lira RB, Perez KR, Riske KA (2017) Membrane permeabilization induced by triton X-100: The role of membrane phase state and edge tension. Chem Phys Lipids 202:28–37

    Article  CAS  PubMed  Google Scholar 

  • Miseta A, Bogner P, Szark A, Kellermayer M, Galambos C, Wheatley DN, Cameronil IL (1995) Permeability effect of non-lytic concentrations of Brij series detergents on the metabolism-independent ion properties of erythrocytes. Biophys J 69:2563–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munro S (2003) Lipid rafts: Elusive or illusive? Cell 115:377–388

    Article  CAS  PubMed  Google Scholar 

  • Nomura F, Nagata M, Inaba T, Hiramatsu H, Hotani H, Takiguchi K (2001) Capabilities of liposomes for topological transformation. Proc Natl Acad Sci U S A 98:2340–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partearroyo MA, Urbaneja MA, Goñi FM (1992) Effective detergent lipid ratios in the solubilization of phosphatidylcholine vesicles by tTriton X-100. FEBS Lett 302:138–140

    Article  CAS  PubMed  Google Scholar 

  • Partearroyo MA, Alonso A, Goñi FM, Tribout M, Paredes SJ (1996) Solubilization of phospholipid bilayers by surfactants belonging to the triton X series: Effect of polar group size. J Colloid Interface Sci 178:156–159

    Article  CAS  Google Scholar 

  • Passot S, Fonseca F, Alarcon-Lorca M, Rolland D, Marin M (2005) Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Eur J Pharm Biopharm 60:335–348

    Article  CAS  PubMed  Google Scholar 

  • Pathak P, London E (2011) Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys J 101:2417–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra SK, Alonso A, Goñi FM (1998) Detergent solubilisation of phospholipid bilayers in the gel state: The role of polar and hydrophobic forces. Biochim Biophys Acta 1373:112–118

    Article  CAS  PubMed  Google Scholar 

  • Patra SK, Alonso A, Arrondo JLR, Goñi FM (1999) Liposomes containing sphingomyelin and cholesterol: Detergent solubilisation and infrared spectroscopic studies. J Liposome Res 9:247–260

    Article  CAS  Google Scholar 

  • Preté PSC, Malheiros SVP, Meirelles NC, de Paula E (2002a) Quantitative assessment of human erythrocyte membrane solubilization by triton X-100. Biophys Chem 97:1–5

    Article  PubMed  Google Scholar 

  • Preté PSC, Gomes K, Malheiros SVP, Meirelles NC, de Paula E (2002b) Solubilization of human erythrocyte membranes by non-ionic surfactants of the polyoxyethylene alkyl ethers series. Biophys Chem 97:45–54

    Article  PubMed  Google Scholar 

  • Preté PSC, de Paula E, Meirelles NC, Malheiros SVP, Goñi FM, Schreier S (2011) Multiple stages of detergent-erythrocyte membrane interaction – A spin label study. Biochim Biophys Acta 1808:164–170

    Article  PubMed  CAS  Google Scholar 

  • Regen S (2002) Lipid–lipid recognition in fluid bilayers: Solving the cholesterol mystery. Curr Opin Chem Biol 6:729–735

    Article  CAS  PubMed  Google Scholar 

  • Requero MA, Goñi FM, Alonso A (1995) The membrane-perturbing properties of palmitoyl-coenzyme-a and palmitoylcarnitine - a comparative study. Biochemistry 34:10400–10405

    Article  CAS  PubMed  Google Scholar 

  • Riske KA, Sudbrack TP, Archilha NL, Uchoa AF, Schroder AP, Marques C, Baptista MS, Itri R (2009) Giant vesicles under oxidative stress induced by a membrane-anchored photosensitizer. Biophys J 97:1362–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas MG, Gennaro AM (2003) Detergent resistant domains in erythrocyte membranes survive after cell cholesterol depletion: An EPR spin label study. Chem Phys Lipids 122:165–169

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Hoffman AF, Mysels KJ (1983) The influence of bile salt structure on self-association in aqueous solutions. J Biol Chem 258:6362–6370

    Article  CAS  PubMed  Google Scholar 

  • Rodi PM, Cabeza MS, Gennaro AM (2006) Detergent solubilization of bovine erythrocytes: Comparison between the insoluble material and the intact membrane. Biophys Chem 122:114–122

    Article  CAS  PubMed  Google Scholar 

  • Rodi PM, Bocco Gianello MD, Corregido MC, Gennaro AM (2014) Comparative study of the interaction of CHAPS and triton X-100 with the erythrocyte membrane. Biochim Biophys Acta 1838:859–866

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Goñi FM, Alonso A (1988) Surfactant-induced release of liposomal contents. A survey of methods and results. Biochim Biophys Acta 937:127–134

    Article  CAS  PubMed  Google Scholar 

  • Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97:1141–1143

    Article  CAS  PubMed  Google Scholar 

  • Samuel BU, Mohandas N, Harrison T, McManus H, Rosse W, Reid M, Haldar K (2001) The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J Biol Chem 276:29319–29329

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer E, Kozlov MM, Lichtenberg D (2005) The effect of cholesterol on the solubilization of phosphatidylcholine bilayers by the non-ionic surfactant triton X-100. Chem Phys Lipids 135:69–82

    Article  CAS  PubMed  Google Scholar 

  • Schönfeldt N (1969) Surface active ethylene oxide adducts. Pergamon, London

    Google Scholar 

  • Schreier S, Malheiros SVP, de Paula E (2000) Surface active drugs: Self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta 1508:210–234

    Article  CAS  PubMed  Google Scholar 

  • Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 100:5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: Not just a soap opera. Biochim Biophys Acta 1666:105–117

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (1966) Erythrocyte membrane stabilization by local anesthetics and tranquilizers. Biochem Pharmacol 15:1753–1766

    Article  CAS  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharm Rev 24:58–55

    Google Scholar 

  • Sheetz MP (1979) Integral membrane protein interaction with triton cytoskeletons of erythrocytes. Biochim Biophys Acta 557:122–134

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731

    Article  CAS  PubMed  Google Scholar 

  • Sonino S, Prinetti A (2013) Membrane domains and the ‘lipid raft’ concept. Curr Med Chem 20:4–21

    Google Scholar 

  • Sot J, Collado MI, Arrondo JLR, Alonso A, Goñi FM (2002) Triton X-100-resistant bilayers: Effect of lipid composition and relevance to the raft phenomenon. Langmuir 18:2828–2835

    Article  CAS  Google Scholar 

  • Steck TL (1974) The organization of proteins in the human red blood cell membrane. A review. J Cell Biol 62:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudbrack TP, Archilha NL, Itri R, Riske KA (2011) Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs. J Phys Chem B 115:269–277

    Article  CAS  PubMed  Google Scholar 

  • Tragner D, Csordas A (1987) Biphasic interaction of triton detergents with the erythrocyte membrane. Biochem J 244:605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsamaloukas A, Szadkowska H, Heerklotz H (2006) Nonideal mixing in multicomponent lipid/detergent systems. J Phys Condens Matter 18:1125–1138

    Article  CAS  Google Scholar 

  • Uragami M, Tokutake N, Yan X, Regen SL (2001) Is the linkage region of sphingolipids responsible for lipid raft formation? J Am Chem Soc 123:5124–5125

    Article  CAS  PubMed  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veatch SL, Keller SL (2005) Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys Rev Lett 94:148101–148104

    Article  PubMed  CAS  Google Scholar 

  • Yawata Y (2003) Cell membrane: The red blood cell as a model. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cells membranes by nonionic detergents. J Supramol Struct 1:233–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Elsevier for the permission to use Fig. 4, originally published in Biochim. Biophys. Acta 1808:164-170, 2011; https://doi.org/10.1016/j.bbamem.2010.10.016. The authors are grateful to Dr. M. Teresa Lamy for the use of the EPR equipment, and Dr. Shirley Schreier for inspiring discussions.

Funding

This study was funded by FAPESP (09/901–1 – EP; 11/22171–6 and 13/20499–0 – KAR; 10/18516–5 - CCD), CNPq (308,621/2013–1 – EP; 472,054/2011–2, 158,413/2013–0 – KAR; 479,993/2011–4 – CCD) and INCT-FCx (KAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneida de Paula.

Ethics declarations

Conflicts of interest

Karin A. Riske declares that she has no conflicts of interest. Cleyton C. Domingues declares that he has no conflicts of interest. Bruna R. Casadei declares that she has no conflicts of interest. Bruno Mattei declares that he has no conflicts of interest. Amanda C. Caritá declares that she has no conflicts of interest. Rafael B. Lira declares that he has no conflicts of interest. Paulo S. C Preté declares that he has no conflicts of interest. Eneida de Paula declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riske, K.A., Domingues, C.C., Casadei, B.R. et al. Biophysical approaches in the study of biomembrane solubilization: quantitative assessment and the role of lateral inhomogeneity. Biophys Rev 9, 649–667 (2017). https://doi.org/10.1007/s12551-017-0310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0310-6

Keywords

Navigation