Skip to main content

Advertisement

Log in

G protein-coupled receptors in cardiac biology: old and new receptors

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) are seven-transmembrane-spanning proteins that mediate cellular and physiological responses. They are critical for cardiovascular function and are targeted for the treatment of hypertension and heart failure. Nevertheless, current therapies only target a small fraction of the cardiac GPCR repertoire, indicating that there are many opportunities to investigate unappreciated aspects of heart biology. Here, we offer an update on the contemporary view of GPCRs and the complexities of their signalling, and review the roles of the ‘classical’ GPCRs in cardiovascular physiology and disease. We then provide insights into other GPCRs that have been less extensively studied in the heart, including orphan, odorant and taste receptors. We contend that these novel cardiac GPCRs contribute to heart function in health and disease and thereby offer exciting opportunities to therapeutically modulate heart function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A large proportion of this groundbreaking work was recognised with the awarding of the 2012 Nobel Prize for chemistry to Drs. R.J. Lefkowitz and B. Kobilka.

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    CAS  PubMed  Google Scholar 

  • Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K, Ruschitzka F, Luscher TF (2004) Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 364:347–354

    CAS  PubMed  Google Scholar 

  • Asano K, Bohlmeyer TJ, Westcott JY, Zisman L, Kinugawa K, Good M, Minobe WA, Roden R, Wolfel EE, Lindenfeld J, David Port J, Perryman MB, Clevel J, Lowes BD, Bristow MR (2002) Altered expression of endothelin receptors in failing human left ventricles. J Mol Cell Cardiol 34:833–846

    CAS  PubMed  Google Scholar 

  • Audet M, Bouvier M (2012) Restructuring G-protein- coupled receptor activation. Cell 151:14–23

    CAS  PubMed  Google Scholar 

  • Bader M (2010) Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 50:439–465

    CAS  PubMed  Google Scholar 

  • Black JW, Crowther AF, Shanks RG, Smith LH, Dornhorst AC (1964) A new adrenergic beta receptor antagonist. Lancet 1:1080–1081

    CAS  PubMed  Google Scholar 

  • Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, Hercz G, Cunningham J, Abu-Alfa AK, Messa P, Coyne DW, Locatelli F, Cohen RM, Evenepoel P, Moe SM, Fournier A, Braun J, McCary LC, Zani VJ, Olson KA, Drueke TB, Goodman WG (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350:1516–1525

    CAS  PubMed  Google Scholar 

  • Boerrigter G, Lark MW, Whalen EJ, Soergel DG, Violin JD, Burnett JC Jr (2011) Cardiorenal actions of TRV120027, a novel b-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ Heart Fail 4:770–778

    CAS  PubMed  Google Scholar 

  • Boerrigter G, Soergel DG, Violin JD, Lark MW, Burnett JC Jr (2012) TRV120027, a novel beta-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ Heart Fail 5:627–634

    CAS  PubMed  Google Scholar 

  • Brinks HL, Eckhart AD (2010) Regulation of GPCR signaling in hypertension. Biochim Biophys Acta Biomembr 1802:1268–1275

    CAS  Google Scholar 

  • Bristow MR (2000) Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101:558–569

    CAS  PubMed  Google Scholar 

  • Bristow MR (2011) Treatment of chronic heart failure with beta-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res 109:1176–1194

    CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309

    CAS  PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    CAS  PubMed  Google Scholar 

  • Burrell KM, Molenaar P, Dawson PJ, Kaumann AJ (2000) Contractile and arrhythmic effects of endothelin receptor agonists in human heart in vitro: blockade with SB 209670. J Pharmacol Exp Ther 292:449–459

    CAS  PubMed  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  PubMed  Google Scholar 

  • Chan HW, Jenkins A, Pipolo L, Hannan RD, Thomas WG, Smith NJ (2006) Effect of dominant-negative epidermal growth factor receptors on cardiomyocyte hypertrophy. J Recept Signal Transduct Res 26:659–677

    CAS  PubMed  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:10978–10983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Meyers D, Javorsky G, Burstow D, Lolekha P, Lucas M, Semmler AB, Savarimuthu SM, Fong KM, Yang IA, Atherton J, Galbraith AJ, Parsonage WA, Molenaar P (2007) Arg389Gly-beta1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenet Genomics 17:941–949

    CAS  PubMed  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Civelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R, Schioth HB (2013) G protein-coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 53:127–146

    CAS  PubMed  Google Scholar 

  • Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    CAS  PubMed  Google Scholar 

  • Cottingham C, Chen Y, Jiao K, Wang Q (2011) The antidepressant desipramine is an arrestin-biased ligand at the alpha(2A)-adrenergic receptor driving receptor down-regulation in vitro and in vivo. J Biol Chem 286:36063–36075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91

    CAS  PubMed  Google Scholar 

  • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  • Deshpande DA, Wang WCH, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JSK, Liggett SB (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16:1299–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeWire SM, Violin JD (2011) Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology. Circ Res 109:205–216

    CAS  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    CAS  PubMed  Google Scholar 

  • DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen X-T, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    CAS  PubMed  Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    CAS  PubMed  Google Scholar 

  • Donato M, Gelpi RJ (2003) Adenosine and cardioprotection during reperfusion—an overview. Mol Cell Biochem 251:153–159

    CAS  PubMed  Google Scholar 

  • Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE (2011a) Activation mechanism of the beta2-adrenergic receptor. Proc Natl Acad Sci USA 108:18684–18689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011b) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108:13118–13123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503:295–299

    CAS  PubMed  Google Scholar 

  • Drutel G, Arrang JM, Diaz J, Wisnewsky C, Schwartz K, Schwartz JC (1995) Cloning of OL1, a putative olfactory receptor and its expression in the developing rat heart. Receptors Channels 3:33–40

    CAS  PubMed  Google Scholar 

  • Du XJ, Bathgate RA, Samuel CS, Dart AM, Summers RJ (2010) Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol 7:48–58

    CAS  PubMed  Google Scholar 

  • Du L, Gao ZG, Nithipatikom K, Ijzerman AP, Veldhoven JP, Jacobson KA, Gross GJ, Auchampach JA (2012) Protection from myocardial ischemia/reperfusion injury by a positive allosteric modulator of the A(3) adenosine receptor. J Pharmacol Exp Ther 340:210–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Einstein R, Jordan H, Zhou W, Brenner M, Moses EG, Liggett SB (2008) Alternative splicing of the G protein-coupled receptor superfamily in human airway smooth muscle diversifies the complement of receptors. Proc Natl Acad Sci USA 105:5230–5235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fatkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD, Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der Ryst E (2005) Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med 11:1170–1172

    PubMed  Google Scholar 

  • Ferrand N, Pessah M, Frayon S, Marais J, Garel JM (1999) Olfactory receptors, Golf alpha and adenylyl cyclase mRNA expressions in the rat heart during ontogenic development. J Mol Cell Cardiol 31:1137–1142

    CAS  PubMed  Google Scholar 

  • Flegel C, Manteniotis S, Osthold S, Hatt H, Gisselmann G (2013) Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS ONE 8:e55368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foster SR, Porrello ER, Purdue B, Chan H-W, Voigt A, Frenzel S, Hannan RD, Moritz KM, Simmons DG, Molenaar P, Roura E, Boehm U, Meyerhof W, Thomas WG (2013) Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLoS ONE 8:e64579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foster SR, Blank K, See Hoe LE, Behrens M, Meyerhof W, Peart JN, Thomas WG (2014a) Bitter taste receptor agonists elicit G-protein-dependent negative inotropy in the murine heart. FASEB J 28:4497–4508

    CAS  PubMed  Google Scholar 

  • Foster SR, Roura E, Thomas WG (2014b) Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther 142:41–61

    CAS  PubMed  Google Scholar 

  • Fu Q, Chen X, Xiang YK (2013) Compartmentalization of beta-adrenergic signals in cardiomyocytes. Trends Cardiovasc Med 23:250–256

    CAS  PubMed Central  PubMed  Google Scholar 

  • George AJ, Thomas WG, Hannan RD (2010) The renin–angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer 10:745–759

    CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Flannery P, Yuan L, Corsino L, Spurney R, Lefkowitz RJ, Luttrell LM (2009) A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med 1:1ra1

    PubMed Central  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2014) Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:399–410

    PubMed  Google Scholar 

  • Goupil E, Tassy D, Bourguet C, Quiniou C, Wisehart V, Petrin D, Le Gouill C, Devost D, Zingg HH, Bouvier M, Saragovi HU, Chemtob S, Lubell WD, Claing A, Hebert TE, Laporte SA (2010) A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2alpha-mediated Rho/ROCK signaling pathway. J Biol Chem 285:25624–25636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffin CA, Kafadar KA, Pavlath GK (2009) MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell 17:649–661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gudermann T, Kalkbrenner F, Schultz G (1996) Diversity and selectivity of receptor-G protein interaction. Annu Rev Pharmacol Toxicol 36:429–459

    CAS  PubMed  Google Scholar 

  • Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hakak Y, Shrestha D, Goegel MC, Behan DP, Chalmers DT (2003) Global analysis of G-protein-coupled receptor signaling in human tissues. FEBS Lett 550:11–17

    CAS  PubMed  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    CAS  PubMed  Google Scholar 

  • Harris DM, Cohn HI, Pesant S, Eckhart AD (2008) GPCR signalling in hypertension: role of GRKs. Clin Sci (Lond) 115:79–89

    CAS  Google Scholar 

  • Headrick JP, Pepe S, Peart JN (2012) Non-analgesic effects of opioids: cardiovascular effects of opioids and their receptor systems. Curr Pharm Des 18:6090–6100

    CAS  PubMed  Google Scholar 

  • Headrick JP, Ashton KJ, Rose’meyer RB, Peart JN (2013) Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther 140:92–111

    CAS  PubMed  Google Scholar 

  • Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes–characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 369:151–159

    CAS  PubMed  Google Scholar 

  • Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443

    CAS  PubMed  Google Scholar 

  • Holloway AC, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S, Southwell BR, Lew MJ, Thomas WG (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61:768–777

    CAS  PubMed  Google Scholar 

  • Insel PA (2003) Location, location, location. Trends Endocrinol Metab 14:100–102

    CAS  PubMed  Google Scholar 

  • Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104:15069–15074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins L, Harries N, Lappin JE, MacKenzie AE, Neetoo-Isseljee Z, Southern C, McIver EG, Nicklin SA, Taylor DL, Milligan G (2012) Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J Pharmacol Exp Ther 343:683–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaoukis A, Deftereos S, Raisakis K, Giannopoulos G, Bouras G, Panagopoulou V, Papoutsidakis N, Cleman MW, Stefanadis C (2013) The role of endothelin system in cardiovascular disease and the potential therapeutic perspectives of its inhibition. Curr Top Med Chem 13:95–114

    CAS  PubMed  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2013) Structure–function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaumann A, Bartel S, Molenaar P, Sanders L, Burrell K, Vetter D, Hempel P, Karczewski P, Krause EG (1999) Activation of beta2-adrenergic receptors hastens relaxation and mediates phosphorylation of phospholamban, troponin I, and C-protein in ventricular myocardium from patients with terminal heart failure. Circulation 99:65–72

    CAS  PubMed  Google Scholar 

  • Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216

    CAS  PubMed  Google Scholar 

  • Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilts JD, Gerhardt MA, Richardson MD, Sreeram G, Mackensen GB, Grocott HP, White WD, Davis RD, Newman MF, Reves JG, Schwinn DA, Kwatra MM (2000) Beta(2)-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both G(s) and G(i). Circ Res 87:705–709

    CAS  PubMed  Google Scholar 

  • Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    CAS  PubMed  Google Scholar 

  • Koole C, Wootten D, Simms J, Valant C, Sridhar R, Woodman OL, Miller LJ, Summers RJ, Christopoulos A, Sexton PM (2010) Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol Pharmacol 78:456–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    PubMed  Google Scholar 

  • Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, Abraham V, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Beauchamp GK, Doulias PT, Ischiropoulos H, Kreindler JL, Reed DR, Cohen NA (2012) T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 122:4145–4159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lefkowitz RJ, Mukherjee C, Coverstone M, Caron MG (1974) Stereospecific (3H) (minus)-alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase. Biochem Biophys Res Commun 60:703–709

    CAS  PubMed  Google Scholar 

  • Leung T, Humbert JE, Stauffer AM, Giger KE, Chen H, Tsai HJ, Wang C, Mirshahi T, Robishaw JD (2008) The orphan G protein-coupled receptor 161 is required for left-right patterning. Dev Biol 323:31–40

    CAS  PubMed  Google Scholar 

  • Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, Wagoner LE, Abraham WT, Anderson JL, Carlquist JF, Krause-Steinrauf HJ, Lazzeroni LC, Port JD, Lavori PW, Bristow MR (2006) A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA 103:11288–11293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326

    CAS  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    CAS  PubMed  Google Scholar 

  • Luttrell LM (2008) Reviews in molecular biology and biotechnology: Transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39:239–264

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    CAS  PubMed  Google Scholar 

  • Lymperopoulos A, Rengo G, Koch WJ (2012) GRK2 inhibition in heart failure: something old, something new. Curr Pharm Des 18:186–191

    CAS  PubMed  Google Scholar 

  • Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587:195–210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54:598–604

    CAS  PubMed  Google Scholar 

  • Mason DA, Moore JD, Green SA, Liggett SB (1999) A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 274:12670–12674

    CAS  PubMed  Google Scholar 

  • May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51

    CAS  PubMed  Google Scholar 

  • Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW (2012) Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 55:1445–1464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, Dorn GW, Liggett SB (2003) Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 9:1300–1305

    PubMed  Google Scholar 

  • Millar RP, Newton CL (2010) The year in G protein-coupled receptor research. Mol Endocrinol 24:261–274

    CAS  PubMed  Google Scholar 

  • Milligan G (2007) G protein-coupled receptor dimerisation: molecular basis and relevance to function. Biochim Biophys Acta Biomembr 1768:825–835

    CAS  Google Scholar 

  • Milligan G, White JH (2001) Protein-protein interactions at G-protein-coupled receptors. Trends Pharmacol Sci 22:513–518

    CAS  PubMed  Google Scholar 

  • Min KD, Asakura M, Liao Y, Nakamaru K, Okazaki H, Takahashi T, Fujimoto K, Ito S, Takahashi A, Asanuma H, Yamazaki S, Minamino T, Sanada S, Seguchi O, Nakano A, Ando Y, Otsuka T, Furukawa H, Isomura T, Takashima S, Mochizuki N, Kitakaze M (2010) Identification of genes related to heart failure using global gene expression profiling of human failing myocardium. Biochem Biophys Res Commun 393:55–60

    CAS  PubMed  Google Scholar 

  • Molenaar P, Parsonage WA (2005) Fundamental considerations of beta-adrenoceptor subtypes in human heart failure. Trends Pharmacol Sci 26:368–375

    CAS  PubMed  Google Scholar 

  • Molenaar P, Bartel S, Cochrane A, Vetter D, Jalali H, Pohlner P, Burrell K, Karczewski P, Krause EG, Kaumann A (2000) Both beta(2)- and beta(1)-adrenergic receptors mediate hastened relaxation and phosphorylation of phospholamban and troponin I in ventricular myocardium of Fallot infants, consistent with selective coupling of beta(2)-adrenergic receptors to G(s)-protein. Circulation 102:1814–1821

    CAS  PubMed  Google Scholar 

  • Molenaar P, Christ T, Ravens U, Kaumann A (2006) Carvedilol blocks beta2- more than beta1-adrenoceptors in human heart. Cardiovasc Res 69:128–139

    CAS  PubMed  Google Scholar 

  • Molenaar P, Savarimuthu SM, Sarsero D, Chen L, Semmler AB, Carle A, Yang I, Bartel S, Vetter D, Beyerdorfer I, Krause EG, Kaumann AJ (2007) (−)-Adrenaline elicits positive inotropic, lusitropic, and biochemical effects through beta2 -adrenoceptors in human atrial myocardium from nonfailing and failing hearts, consistent with Gs coupling but not with Gi coupling. Naunyn Schmiedebergs Arch Pharmacol 375:11–28

    CAS  PubMed  Google Scholar 

  • Molenaar P, Christ T, Hussain RI, Engel A, Berk E, Gillette KT, Chen L, Galindo-Tovar A, Krobert KA, Ravens U, Levy FO, Kaumann AJ (2013) PDE3, but not PDE4, reduces beta(1) - and beta(2) -adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients. Br J Pharmacol 169:528–538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molenaar P, Christ T, Berk E, Engel A, Gillette KT, Galindo-Tovar A, Ravens U, Kaumann AJ (2014) Carvedilol induces greater control of beta2- than beta 1-adrenoceptor-mediated inotropic and lusitropic effects by PDE3, while PDE4 has no effect in human failing myocardium. Naunyn Schmiedebergs Arch Pharmacol 387:629–640

    CAS  PubMed  Google Scholar 

  • Monasky MM, Taglieri DM, Henze M, Warren CM, Utter MS, Soergel DG, Violin JD, Solaro RJ (2013) The beta-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium. Am J Physiol Heart Circ Physiol 305:H856–H866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore-Morris T, Varrault A, Mangoni ME, Le Digarcher A, Negre V, Dantec C, Journot L, Nargeot J, Couette B (2009) Identification of potential pharmacological targets by analysis of the comprehensive G protein-coupled receptor repertoire in the four cardiac chambers. Mol Pharmacol 75:1108–1116

    CAS  PubMed  Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    CAS  PubMed  Google Scholar 

  • Neetoo-Isseljee Z, MacKenzie AE, Southern C, Jerman J, McIver EG, Harries N, Taylor DL, Milligan G (2013) High-throughput identification and characterization of novel, species-selective GPR35 agonists. J Pharmacol Exp Ther 344:568–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang YF, Ryba NJP, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390

    CAS  PubMed  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng LX, Zhao G, Ryba NJP, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202

    CAS  PubMed  Google Scholar 

  • Neuhaus EM, Zhang WY, Gelis L, Deng Y, Noldus J, Hatt H (2009) Activation of an olfactory receptor inhibits proliferation of prostate cancer cells. J Biol Chem 284:16218–16225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann J, Schmitz W, Scholz H, von Meyerinck L, Doring V, Kalmar P (1988) Increase in myocardial Gi-proteins in heart failure. Lancet 2:936–937

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    CAS  PubMed  Google Scholar 

  • Noda K, Feng YH, Liu XP, Saad Y, Husain A, Karnik SS (1996) The active state of the AT1 angiotensin receptor is generated by angiotensin II induction. Biochemistry 35:16435–16442

    CAS  PubMed  Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of beta(2)-adrenergic receptor activation. Cell 152:532–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oro C, Qian H, Thomas WG (2007) Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol Ther 113:210–226

    CAS  PubMed  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parameswaran N, Spielman WS (2006) RAMPs: the past, present and future. Trends Biochem Sci 31:631–638

    CAS  PubMed  Google Scholar 

  • Peart JN, Gross GJ (2006) Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways. Am J Physiol Heart Circ Physiol 291:H1746–H1753

    CAS  PubMed  Google Scholar 

  • Perez D, Hébert T, Cotecchia S, Doze VA, Graham RM, Bylund DB, Altosaar K, Devost D, Gora S, Goupil E, Kan S, Machkalyan G, Sleno R, Zylbergold P, Balaji P, Bond RA, Eikenburg DC, Hieble JP, Minneman KP, Parra S, Hills R (2014) Adrenoceptors. IUPHAR database (IUPHAR-DB). Available at: http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=4

  • Pluznick JL, Zou DJ, Zhang XH, Yan QS, Rodriguez-Gil DJ, Eisner C, Wells E, Greer CA, Wang T, Firestein S, Schnermann J, Caplan MJ (2009) Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci USA 106:2059–2064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, Caplan MJ (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410–4415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590

    CAS  PubMed  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Regard JB, Sato IT, Coughlin SR (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 135:561–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    CAS  PubMed  Google Scholar 

  • Rodbell M (1995) Nobel lecture. Signal transduction: evolution of an idea. Biosci Rep 15:117–133

    CAS  PubMed  Google Scholar 

  • Ronkainen VP, Tuomainen T, Huusko J, Laidinen S, Malinen M, Palvimo JJ, Yla-Herttuala S, Vuolteenaho O, Tavi P (2014) Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling. Cardiovasc Res 101:69–77

    CAS  PubMed  Google Scholar 

  • Salazar NC, Chen J, Rockman HA (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta Biomembr 1768:1006–1018

    CAS  Google Scholar 

  • Schmid CL, Raehal KM, Bohn LM (2008) Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 105:1079–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scimia MC, Hurtado C, Ray S, Metzler S, Wei K, Wang J, Woods CE, Purcell NH, Catalucci D, Akasaka T, Bueno OF, Vlasuk GP, Kaliman P, Bodmer R, Smith LH, Ashley E, Mercola M, Brown JH, Ruiz-Lozano P (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488:394–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scimia MC, Blass BE, Koch WJ (2014) Apelin receptor: its responsiveness to stretch mechanisms and its potential for cardiovascular therapy. Expert Rev Cardiovasc Ther 12:733–741

    CAS  PubMed  Google Scholar 

  • Shoichet BK, Kobilka BK (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 33:268–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449

    CAS  PubMed  Google Scholar 

  • Smith NJ, Chan HW, Qian H, Bourne AM, Hannan KM, Warner FJ, Ritchie RH, Pearson RB, Hannan RD, Thomas WG (2011) Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy. Hypertension 57:973–980

    CAS  PubMed  Google Scholar 

  • Snead AN, Insel PA (2012) Defining the cellular repertoire of GPCRs identifies a profibrotic role for the most highly expressed receptor, protease-activated receptor 1, in cardiac fibroblasts. FASEB J 26:4540–4547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spaethling JM, Piel D, Dueck H, Buckley PT, Morris JF, Fisher SA, Lee J, Sul JY, Kim J, Bartfai T, Beck SG, Eberwine JH (2014) Serotonergic neuron regulation informed by in vivo single-cell transcriptomics. FASEB J 28:771–780

    PubMed Central  PubMed  Google Scholar 

  • Spinale FG, Walker JD, Mukherjee R, Iannini JP, Keever AT, Gallagher KP (1997) Concomitant endothelin receptor subtype-A blockade during the progression of pacing-induced congestive heart failure in rabbits. Beneficial effects on left ventricular and myocyte function. Circulation 95:1918–1929

    CAS  PubMed  Google Scholar 

  • Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440

    CAS  PubMed  Google Scholar 

  • Tang CM, Insel PA (2004) GPCR expression in the heart - “New” receptors in myocytes and fibroblasts. Trends Cardiovasc Med 14:94–99

    CAS  PubMed  Google Scholar 

  • Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, Ponikowski P, Unemori E, Voors AA, Adams KF Jr, Dorobantu MI, Grinfeld LR, Jondeau G, Marmor A, Masip J, Pang PS, Werdan K, Teichman SL, Trapani A, Bush CA, Saini R, Schumacher C, Severin TM, Metra M (2013) Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381:29–39

    CAS  PubMed  Google Scholar 

  • Thanawala VJ, Forkuo GS, Stallaert W, Leff P, Bouvier M, Bond R (2014) Ligand bias prevents class equality among beta-blockers. Curr Opin Pharmacol 16:50–57

    CAS  PubMed  Google Scholar 

  • Thomas WG, Qian H, Chang CS, Karnik S (2000) Agonist-induced phosphorylation of the angiotensin II (AT(1A)) receptor requires generation of a conformation that is distinct from the inositol phosphate-signaling state. J Biol Chem 275:2893–2900

    CAS  PubMed  Google Scholar 

  • Thomas WG, Brandenburger Y, Autelitano DJ, Pham T, Qian HW, Hannan RD (2002) Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ Res 90:135–142

    CAS  PubMed  Google Scholar 

  • Tilley DG (2011) G protein–dependent and G protein–independent signaling pathways and their impact on cardiac function. Circ Res 109:217–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107:3210–3215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaidehi N, Kenakin T (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 10:775–781

    CAS  PubMed  Google Scholar 

  • Valant C, May LT, Aurelio L, Chuo CH, White PJ, Baltos JA, Sexton PM, Scammells PJ, Christopoulos A (2014) Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc Natl Acad Sci USA 111:4614–4619

    CAS  PubMed Central  PubMed  Google Scholar 

  • van den Brink OW, Delbridge LM, Rosenfeldt FL, Penny D, Esmore DS, Quick D, Kaye DM, Pepe S (2003) Endogenous cardiac opioids: enkephalins in adaptation and protection of the heart. Heart Lung Circ 12:178–187

    PubMed  Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    CAS  PubMed  Google Scholar 

  • Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, Whalen EJ, Gowen M, Lark MW (2010) Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335:572–579

    CAS  PubMed  Google Scholar 

  • Violin JD, Soergel DG, Boerrigter G, Burnett JC Jr, Lark MW (2013) GPCR biased ligands as novel heart failure therapeutics. Trends Cardiovasc Med 23:242–249

    CAS  PubMed  Google Scholar 

  • Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I (1975) Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 37:1022–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker JK, Penn RB, Hanania NA, Dickey BF, Bond RA (2011) New perspectives regarding beta(2) -adrenoceptor ligands in the treatment of asthma. Br J Pharmacol 163:18–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Wu H, Evron T, Vardy E, Han GW, Huang XP, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, Cherezov V, Caron MG, Roth BL, Stevens RC (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355

    PubMed  Google Scholar 

  • Wilbur SL, Marchlinski FE (1997) Adenosine as an antiarrhythmic agent. Am J Cardiol 79:30–37

    CAS  PubMed  Google Scholar 

  • Wootten D, Christopoulos A, Sexton PM (2013) Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 12:630–644

    CAS  PubMed  Google Scholar 

  • Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    CAS  PubMed  Google Scholar 

  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y (1996) Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–3228

    CAS  PubMed  Google Scholar 

  • Zhang XM, Rogers M, Tian HK, Zhang XH, Zou DJ, Jian L, Ma MH, Shepherd GM, Firestein SJ (2004) High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc Natl Acad Sci USA 101:14168–14173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XH, De la Cruz O, Pinto JM, Nicolae D, Firestein S, Gilad Y (2007) Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol 8:R86

    PubMed Central  PubMed  Google Scholar 

  • Zhao P, Metcalf M, Bunnett NW (2014) Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 5:67

    Google Scholar 

Download references

Acknowledgements

We would also like to thank Dr Jason Peart for valuable comments on the manuscript.

Compliance with Ethical Standards

Funding

This work was supported by grants awarded to WGT from the Australian National Health and Medical Research Council (NHMRC) (1024726) and the National Heart Foundation of Australia (G-12B-6532). SRF was supported by an Australian Postgraduate Award scholarship.

Conflict of interest

Thomas G. Walter, Simon R. Foster, and Roura Eugeni declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter G. Thomas.

Additional information

Special Issue: Biophysics of Human Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, S.R., Roura, E., Molenaar, P. et al. G protein-coupled receptors in cardiac biology: old and new receptors. Biophys Rev 7, 77–89 (2015). https://doi.org/10.1007/s12551-014-0154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-014-0154-2

Keywords

Navigation