Skip to main content
Log in

Fabrication and Application of Gel-Forming CeO2 Fixed Abrasive Tools for Quartz Glass Polishing

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A gel-forming cerium dioxide (CeO2) fixed abrasive tool for quartz glass polishing was proposed to improve abrasive utilization. The effects of the solid content of polyvinyl alcohol (PVA) and phenolic (PF) resin on the mechanical properties, micromorphology, and friction properties of gel-forming CeO2 abrasive tools were analyzed. The effects of dispersant and coupling agents on the micromorphology of the gel-forming CeO2 abrasive tools were analyzed. The microstructure uniformity, hardness uniformity, and friction coefficient stability of the gel-forming and the hot pressing forming CeO2 abrasive tools were compared and analyzed. The polishing effects of the gel-forming CeO2 abrasive tools, hot pressing CeO2 abrasive tools and ceria slurry on quartz glass were compared. The results showed that when the solid content of PVA was 6 wt%, the solid content of PF was 8 wt%, the concentration of the PEI dispersant was 1 wt% and the KH550 coupling agent concentration was 1.5 wt%, the mechanical properties and friction performance of the gel-forming CeO2 abrasive tools is the best. Gel-forming abrasive tools were superior to hot pressing abrasive tools in terms of microstructure uniformity, hardness uniformity, and friction coefficient stability. The polishing experiments showed that after polishing by the gel-forming abrasive tool, the average surface roughness Ra reached 2.49 nm, which was better than polishing by the hot pressing abrasive tools and reached the polishing effect of ceria slurry. The flatness PV reached 0.660 µm, which was far better than that of ceria slurry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Nguyen, K. H., Lee, P. A., & Kim, B. H. (2015). Experimental investigation of ECDM for fabricating micro structures of quartz. International Journal of Precision Engineering and Manufacturing, 1(16), 5–12. https://doi.org/10.1007/s12541-015-0001-9

    Article  Google Scholar 

  2. Wang, Z., Li, H. N., Yu, T. B., Chen, H., & Zhao, J. (2019). On the predictive modelling of machined surface morphology in abrasive air jet polishing of quartz glass. International Journal of Mechanical Sciences, 152, 1–18. https://doi.org/10.1016/j.ijmecsci.2018.12.041

    Article  Google Scholar 

  3. Choi, J., Shin, C., Yang, J., Chae, S. K., & Kim, T. (2019). Effect of ceria abrasive synthesized by supercritical hydrothermal method for chemical mechanical planarization. ECS Journal of Solid State Science and Technology, 8(5), 3128–3132.

    Article  Google Scholar 

  4. Lee, S. I., Hwang, J., Kim, H., & Jeong, H. (2007). Investigation of polishing characteristics of shallow trench isolation chemical mechanical planarization with different types of slurries. Microelectronic Engineering, 84(4), 626–630. https://doi.org/10.1016/j.mee.2006.12.004

    Article  Google Scholar 

  5. Zhou, Y., Luo, H., Luo, G., Chen, G., Kang, C., & Pan, G. (2020). Chemical mechanical polishing (CMP) of fused silica (FS) using ceria slurry recycling. ECS Journal of Solid State Science and Technology, 9(4), 044002.

    Article  Google Scholar 

  6. Kelsall, A. (1998). Cerium oxide as a mute to acid free polishing. Glass Technology, 39(1), 6–9.

    Google Scholar 

  7. Hoshino, T., Kurata, Y., Terasaki, Y., & Susa, K. (2001). Mechanism of polishing of SiO2 films by CeO2 particles. Journal of Non-Crystalline Solids, 283(1–3), 129–136. https://doi.org/10.1016/S0022-3093(01)00364-7

    Article  Google Scholar 

  8. Peng, W., Guan, C., & Li, S. (2014). Material removal mechanism of ceria particles with different sizes in glass polishing. Optical Engineering, 53(3), 035104. https://doi.org/10.1117/1.OE.53.3.035104

    Article  Google Scholar 

  9. Guo, X. G., Yuan, S., Huang, J. X., Chen, C., Kang, R. K., Jin, Z. J., & Guo, D. M. (2020). Effects of pressure and slurry on removal mechanism during the chemical mechanical polishing of quartz glass using ReaxFF MD. Applied Surface Science, 505, 144610. https://doi.org/10.1016/j.apsusc.2019.144610

    Article  Google Scholar 

  10. Myong, K. K., Byun, J., Choo, M. J., Kim, H., Kim, J. Y., Lim, T., & Kim, J. J. (2021). Direct and quantitative study of ceria-SiO2 interaction depending on Ce3+ concentration for chemical mechanical planarization (CMP) cleaning. Materials Science in Semiconductor Processing, 122, 105500. https://doi.org/10.1016/j.mssp.2020.105500

    Article  Google Scholar 

  11. Peng, W. Q., Guan, C. L., & Li, S. Y. (2014). Defect-free surface of quartz glass polished in elastic mode by chemical impact reaction. Journal of Central South University, 21(12), 4438–4444.

    Article  Google Scholar 

  12. Wakamatsu, K., Kurokawa, S., Toyama, T., & Hayashi, T. (2019). CMP characteristics of quartz glass substrate by aggregated colloidal ceria slurry. Precision Engineering-Journal of the International Societies for Precision, 60, 458–464. https://doi.org/10.1016/j.precisioneng.2019.06.014

    Article  Google Scholar 

  13. Zhang, Z. T., Yu, G. D., Zhou, Y., Dong, L., Sun, Q. X., Jia, X. L., & Shao, G. S. (2015). A Novel strategy for the synthesis of CeO2/CeF3 composite powders with improved suspension stability and chemical mechanical polishing (CMP) performance. Arabian Journal for Science and Engineering, 40(10), 2897–2901. https://doi.org/10.1007/s13369-015-1847-y

    Article  Google Scholar 

  14. Kwak, D., Kim, J., Oh, S., Bae, C., & Kim, T. (2020). Application of electrospray-scanning mobility particle sizer for the measurement of sub-10 nm chemical mechanical planarization slurry abrasive size distribution. Review of Scientific Instruments, 91(7), 075117. https://doi.org/10.1063/5.0007167

    Article  Google Scholar 

  15. Wei, Q. L., Li, X. Y., Gao, W., Wang, C., & He, J. G. (2015). Dispersion behavior of particles in concentrated nano-ceria slurries. Rare Metal Materials and Engineering, 44(9), 2265–2269.

    Google Scholar 

  16. Lin, B., Jiang, X. M., Li, S. P., & Cao, Z. C. (2019). Mechanism of material removal by fixed abrasive lapping of fused quartz glass. Journal of Manufacturing Processes, 46, 279–285. https://doi.org/10.1016/j.jmapro.2019.08.030

    Article  Google Scholar 

  17. Fu, Y. C., & Li, Y. G. (2014). Glass polishing with bound-abrasive vibrating polishing tools. Journal of Optoelectronics and Advanced Materials., 16(1–2), 70–75.

    Google Scholar 

  18. Choi, J. Y., & Jeong, H. D. (2004). A study on polishing of molds using hydrophilic fixed abrasive pad. International Journal of Machine Tools and Manufacture, 44(11), 1163–1169. https://doi.org/10.1016/j.ijmachtools.2004.04.006

    Article  Google Scholar 

  19. Enomoto, T., Satake, U., Fujita, T., & Sugihara, T. (2013). Spiral-structured fixed-abrasive pads for glass finishing. CIRP Annals—Manufacturing Technology, 62(1), 311–314. https://doi.org/10.1016/j.cirp.2013.03.011

    Article  Google Scholar 

  20. Tang, H. Y., Yang, W., Liu, W. J., Ma, J. L., & Luo, X. Y. (2020). Characteristic of fixed abrasive polishing for fused silica in anhydrous environment. Optik, 202, 163623. https://doi.org/10.1016/j.ijleo.2019.163623

    Article  Google Scholar 

  21. Tian, Y. B., Zhong, Z. W., & Ng, J. H. (2013). Effects of chemical slurries on fixed abrasive chemical-mechanical polishing of optical silicon substrates. International Journal of Precision Engineering and Manufacturing, 14(8), 1447–1454. https://doi.org/10.1007/s12541-013-0195-7

    Article  Google Scholar 

  22. Kim, H. M., Venkatesh, R. P., Kwon, T. Y., & Park, J. G. (2012). Influence of anionic polyelectrolyte addition on ceria dispersion behavior for quartz chemical mechanical polishing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 411, 122–128. https://doi.org/10.1016/j.colsurfa.2012.07.009

    Article  Google Scholar 

  23. Cheng, J., Huang, S., & Lu, X. C. (2020). Preparation of surface modified ceria nanoparticles as abrasives for the application of chemical mechanical polishing (CMP). ECS Journal of Solid State Science and Technology, 9(2), 024015.

    Article  Google Scholar 

  24. Chandra, A., Karra, P., Bastawros, A. F., Biswas, R., Sherman, P. J., Armini, S., & Lucca, D. A. (2008). Prediction of scratch generation in chemical mechanical planarization. CIRP Annals—Manufacturing Technology, 57(1), 559–562. https://doi.org/10.1016/j.cirp.2008.03.130

    Article  Google Scholar 

  25. Kwon, T. Y., Cho, B. J., Ramachandran, M., Busnaina, A. A., & Park, J. G. (2013). Investigation of source-based scratch formation during oxide chemical mechanical planarization. Tribology Letters, 50(2), 169–175. https://doi.org/10.1007/s11249-012-0098-2

    Article  Google Scholar 

  26. Ring, T. A., Feeney, P., Boldridge, D., Kasthurirangan, J., Li, S., & Dirksen, J. A. (2007). Brittle and ductile fracture mechanics analysis of surface damage caused during CMP. Journal of the Electrochemical Society, 154(3), 239–248.

    Article  Google Scholar 

  27. Suratwala, T., Steele, R., Feit, M. D., Wong, L., Miller, P., Menapace, J., & Davis, P. (2007). Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing. Journal of Non-Crystalline Solids, 354(18), 2023–2037. https://doi.org/10.1016/j.jnoncrysol.2007.11.015

    Article  Google Scholar 

  28. Miao, W. P., Ding, Y. L., Zhao, Y. J., Bao, H., Yan, N., Yang, W., Hui, Z., & Liu, B. (2019). Modified gel casting technique to fabricate honeycomb structured vitrified-bonded ultrafine diamond grinding wheels. Ceramics International, 46, 462–4469. https://doi.org/10.1016/j.ceramint.2019.10.172

    Article  Google Scholar 

  29. Huang, S. G., Lu, J., Lin, Y. C., Yu, Y. Q., Xu, X. P., & Cui, C. C. (2020). Study on the enhancement of sol–gel properties by binary compounding technology for dry polishing hard and brittle materials. Journal of Sol–Gel Science and Technology, 96, 314–326. https://doi.org/10.1007/s10971-020-05339-3

    Article  Google Scholar 

  30. Luo, Q. F., Lu, J., Li, Z., & Wang, J. (2020). Fabrication of a sol–gel polishing tool for green manufacturing of the seal stone. Journal of Sol–Gel Science and Technology, 96, 576–588. https://doi.org/10.1007/s10971-020-05358-0

    Article  Google Scholar 

  31. Lu, J., Luo, Q. F., Song, Y. Y., Hu, G. G., & Xu, X. P. (2015). Fabrication and application of gel-bonded ultrafine diamond abrasive tools. Journal of Mechanical Engineering, 51(15), 205–212. (in Chinese).

    Article  Google Scholar 

  32. Zhang, W., Liu, X. P., Chen, S. P., Wan, L., Li, J. W., & Liao, M. Y. (2020). Variations in structure and properties of vitrified bonds and vitrified diamond composites prepared by sol–gel and melting methods at different sintering temperature. Ceramics International, 46, 21202–21210. https://doi.org/10.1016/j.ceramint.2020.05.202

    Article  Google Scholar 

  33. Lozinsky, V. I., Leonova, I. M., Ivanov, R. V., & Bakeeva, I. V. (2017). A study of cryostructuring of polymer systems. 46. physicochemical properties and microstructure of poly(vinyl alcohol) cryogels formed from polymer solutions in mixtures of dimethyl sulfoxide with low-molecular-mass alcohols. Colloid Journal, 79, 788–796. https://doi.org/10.1134/S1061933X17060114

    Article  Google Scholar 

  34. Meacham, R., Liu, M., Guo, J., Zehnder, A. T., & Hui, C. Y. (2020). Effect of hydration on tensile response of a dual cross-linked PVA hydrogel. Experimental Mechanics, 8, 1161–1165. https://doi.org/10.1007/s11340-020-00598-1

    Article  Google Scholar 

  35. Lozinsky, V. I., Kolosova, O. Y., Michurov, D. A., Dubovik, A. S., Vasilev, V. G., & Grinberg, V. Y. (2018). Cryostructuring of polymeric systems. 49. Unexpected “Kosmotropic-Like” impact of organic chaotropes on freeze-thaw-induced gelation of PVA in DMSO. Gels, 4(4), 81. https://doi.org/10.3390/gels4040081

    Article  Google Scholar 

  36. Prashanth, K. V. H., Lakshman, K., Shamala, T. R., & Tharanathan, R. N. (2005). Biodegradation of chitosan-graft-polymethylmethacrylate films. International Biodeterioration and Biodegradation, 56(2), 115–120. https://doi.org/10.1016/j.ibiod.2005.06.007

    Article  Google Scholar 

  37. Nagahata, M., Nakaoka, R., Teramoto, A., Abe, K., & Tsuchiya, T. (2005). The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes. Biomaterials, 26(25), 5138–5144. https://doi.org/10.1016/j.biomaterials.2005.01.041

    Article  Google Scholar 

  38. Fang, Z. C., & Suo, J. P. (2011). Synthesis and characterization of phenolic resol resin blended with silica sol and PVA. Journal of Applied Polymer Science, 119, 744–751. https://doi.org/10.1002/app.32741

    Article  Google Scholar 

  39. Zhi, M. Y., Chen, X. T., Liu, Q. Y., & Jia, J. Y. (2018). Improved mechanical properties and thermal stability of phenol formaldehyde resin by incorporating poly(vinyl alcohol)-grafted reduced graphene oxide nanohybrid. Materials Research Express, 9(5), 095306. https://doi.org/10.1088/2053-1591/aad6c2

    Article  Google Scholar 

  40. Oh, M. H., Nho, J. S., Cho, S. B., Lee, J. S., & Singh, R. K. (2011). Polishing behaviors of ceria abrasives on silicon dioxide and silicon nitride CMP. Powder Technology, 206, 239–245. https://doi.org/10.1016/j.powtec.2010.09.025

    Article  Google Scholar 

  41. Shimono, N., Koyama, N., & Kawaguchi, M. (2006). Polymer adsorption effects on stabilities and chemical mechanical polishing properties of ceria particles. Japanese Journal of Applied Physics, 45(5), 4196–4200.

    Article  Google Scholar 

  42. Xie, R. Q., Liao, D. F., Wang, X. B., Yuan, Z. G., Zhong, B., Chen, X. H., Wang, J., Lei, X. Y., & Hou, J. (2014). Fabrication of Nd:YAG crystal slab using composite lap. High Power Laser and Particle Beams, 26(1), 012007.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Zhejiang Province (No. LZY21E050004), Quzhou Science and Technology Planning Project (No. 2019K10).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kaiping Feng or Zhaozhong Zhou.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, K., Lyu, B., Zhao, T. et al. Fabrication and Application of Gel-Forming CeO2 Fixed Abrasive Tools for Quartz Glass Polishing. Int. J. Precis. Eng. Manuf. 23, 985–1002 (2022). https://doi.org/10.1007/s12541-022-00687-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00687-2

Keywords

Navigation