Skip to main content
Log in

Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Graphene/aluminum metal matrix composites (MMC) with enhanced thermal conductivity are fabricated by friction stir processing (FSP). In fabrication of the MMC, graphene reinforcement is applied in the form of a graphene oxide (GO)/water colloid for safer and simpler processing. The result of Raman spectroscopy suggests that graphene reinforcements are successfully mixed into the aluminum matrix by FSP. The thermal conductivity of the graphene/aluminum MMC is measured to increase by more than 15% in comparison with that of the aluminum matrix. FSP and graphene reinforcement both improve the ductility of the fabricated MMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Zhang, Y., and et al., “Electric Field Effect in Atomically Thin Carbon Films” Science, Vol. 306, No. 5696, pp. 666–669, 2004.

    Article  Google Scholar 

  2. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., and et al., “Superior Thermal Conductivity of Single-Layer Graphene” Nano Letters, Vol. 8, No. 3, pp. 902–907, 2008.

    Article  Google Scholar 

  3. Chen, J. H., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M. S., “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2” Nature Nanotechnology, Vol. 3, No. 4, pp. 206–209, 2008.

    Article  Google Scholar 

  4. Lee, C., Wei, X., Kysar, J. W., and Hone, J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene” Science, Vol. 321, No. 5887, pp. 385–388, 2008.

    Article  Google Scholar 

  5. Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., and et al., “Graphene-Based Composite Materials” Nature, Vol. 442, Paper No. 7100, pp. 282–286, 2006.

    Article  Google Scholar 

  6. Tsunekawa, Y., Suzuki, H., and Genma, Y., “Application of Ultrasonic Vibration to in Situ MMC Process by Electromagnetic Melt Stirring” Materials & Design, Vol. 22, No. 6, pp. 467–472, 2001.

    Article  Google Scholar 

  7. Yang, Y., Lan, J., and Li, X., “Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy” Materials Science and Engineering: A, Vol. 380, No. 1, pp. 378–383, 2004.

    Article  Google Scholar 

  8. Choi, H., Shin, J. H., Min, B. H., and Bae, D. H., “Deformation Behavior of Al-Si Alloy Based Nanocomposites Reinforced with Carbon Nanotubes” Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 2, pp. 327–329, 2010.

    Article  Google Scholar 

  9. Allabergenov, B. and Kim, S., “Investigation of Electrophysical and Mechanical Characteristics of Porous Copper-Carbon Composite Materials Prepared by Spark Plasma Sintering” Int. J. Precis. Eng. Manuf., Vol. 14, No. 7, pp. 1177–1183, 2013.

    Article  Google Scholar 

  10. George, R., Kashyap, K. T., Rahul, R., and Yamdagni, S., “Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites” Scripta Materialia, Vol. 53, No. 10, pp. 1159–1163, 2005.

    Article  Google Scholar 

  11. Zhong, R., Cong, H., and Hou, P., “Fabrication of Nano-Al based Composites Reinforced by Single-Walled Carbon Nanotubes” Carbon, Vol. 41, No. 4, pp. 848–851, 2003.

    Article  Google Scholar 

  12. Kuzumaki, T., Miyazawa, K., Ichinose, H., and Ito, K., “Processing of Carbon Nanotube Reinforced Aluminum Composite” Journal of Materials Research, Vol. 13, No. 9, pp. 2445–2449, 1998.

    Article  Google Scholar 

  13. Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Temple-Smith, P., and Dawes, C. J., “International Patent Application PCT/GB92/02203 and GB Patent Application 9125978.8” 1991.

    Google Scholar 

  14. Mishra, R. S., Mahoney, M., McFadden, S., Mara, N., and Mukherjee, A., “High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy” Scripta Materialia, Vol. 42, No. 2, pp. 163–168, 1999.

    Article  Google Scholar 

  15. Morisada, Y., Fujii, H., Nagaoka, T., Nogi, K., and Fukusumi, M., “Fullerene/A5083 Composites Fabricated by Material Flow during Friction Stir Processing” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 10, pp. 2097–2101, 2007.

    Article  Google Scholar 

  16. Cavaliere, P., “Mechanical Properties of Friction Stir Processed 2618/Al2O3/20p Metal Matrix Composite” Composites A, Vol. 36, pp.1657–1665, 2005.

    Article  Google Scholar 

  17. Barmouz, M. and Givi, M. K. B., “Fabrication of in Situ Cu/SiC Composites using Multi-Pass Friction Stir Processing: Evaluation of Microstructural, Porosity, Mechanical and Electrical Behavior” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 10, pp. 1445–1453, 2011.

    Article  Google Scholar 

  18. Ma, Z. Y. and Mishra, R. S., “Development of Ultrafine-Grained Microstructure and Low Temperature (0.48 Tm) Superplasticity in Friction Stir Processed Al-Mg-Zr” Scripta Materialia, Vol. 53, No. 1, pp. 75–80, 2005.

    Article  Google Scholar 

  19. Mishra, R. S., Ma, Z., and Charit, I., “Friction Stir Processing: a Novel Technique for Fabrication of Surface Composite” Materials Science and Engineering: A, Vol. 341, No. 1, pp. 307–310, 2003.

    Article  Google Scholar 

  20. Johannes, L. B., Yowell, L. L., Sosa, E., Arepalli, S., and Mishra, R. S., “Survivability of Single-Walled Carbon Nanotubes during Friction Stir Processing” Nanotechnology, Vol. 17, No. 12, Paper No. 3081, 2006.

    Article  Google Scholar 

  21. Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M., “MWCNTs/AZ31 Surface Composites Fabricated by Friction Stir Processing” Materials Science and Engineering: A, Vol. 419, No. 1, pp. 344–348, 2006.

    Article  Google Scholar 

  22. Hummers Jr, W. S. and Offeman, R. E., “Preparation of Graphitic Oxide” Journal of the American Chemical Society, Vol. 80, No. 6, pp. 1339–1339, 1958.

    Article  Google Scholar 

  23. Kotov, N. A., Dékány, I., and Fendler, J. H., “Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by SelfAssembly: Transition between Conductive and NonConductive States” Advanced Materials, Vol. 8, No. 8, pp. 637–641, 1996.

    Article  Google Scholar 

  24. Cuong, T. V., Pham, V. H., Shin, E. W., Chung, J. S., Hur, S. H., and et al., “Temperature-Dependent Photoluminescence from Chemically and Thermally reduced Graphene Oxide” Applied Physics Letters, Vol. 99, No. 4, Paper No. 041905, 2011.

    Google Scholar 

  25. Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W. F., and Tour, J. M., “Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets” Journal of the American Chemical Society, Vol. 130, No. 48, pp. 16201–16206, 2008.

    Article  Google Scholar 

  26. Hong, S. T., Yum, Y. J., Choi, S. T., Hur, S. H., Jeon, C. H. and Seo, J. J., “Manufacturing jig for metal matrix nano composites (MMNC) and manufacturing method for metal matrix nano composites using the same specification” KOR Patent, No. 10-2012-0000642, 2012.

    Google Scholar 

  27. Mishra, R. S. and Mahoney, M. W., “Metal Superplasticity Enhancement and Forming Process” US Patent, No. 6712916, 2004.

    Google Scholar 

  28. Mishra, R. S., “Superplastic Forming of Micro Components” US Patent, No. 6655575, 2003.

    Google Scholar 

  29. Sharma, S. R., Ma, Z., and Mishra, R. S., “Effect of Friction Stir Processing on Fatigue Behavior of A356 Alloy” Scripta Materialia, Vol. 51, No. 3, pp. 237–241, 2004.

    Article  Google Scholar 

  30. Solin, S. and Ramdas, A., “Raman Spectrum of Diamond” Physical Review B, Vol. 1, No. 4, pp. 1687–1869, 1970.

    Article  Google Scholar 

  31. Pham, V. H., Cuong, T. V., Dang, T. T., Hur, S. H., Kong, B. S., and et al., “Superior Conductive Polystyrene-Chemically Converted Graphene Nanocomposite” Journal of Materials Chemistry, Vol. 21, No. 30, pp. 11312–11316, 2011.

    Article  Google Scholar 

  32. Kang, S. H., Chung, H. S., Han, H. N., Oh, K. H., Lee, C. G., and Kim, S. J., “Relationship between Formability and Microstructure of Al Alloy Sheet Locally Modified by Friction Stir Processing” Scripta Materialia, Vol. 57, No. 1, pp. 17–20, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Tae Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, CH., Jeong, YH., Seo, JJ. et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf. 15, 1235–1239 (2014). https://doi.org/10.1007/s12541-014-0462-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0462-2

Keywords

Navigation