Skip to main content
Log in

An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL)

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Nanofluid minimum quantity lubrication (MQL) technique has recently attained a significant attention for mechanical machining processes to reduce environmental loads caused by full usage of metal working fluids (MWF). Nanofluid refers to a fluid containing nanoparticles, which has superior lubrication and cooling characteristics. This paper investigates the characteristics of a nanofluid MQL micro-grinding process through a series of experiments. The miniaturized desktop machine tool system is developed, and a small grinding wheel is used to effectively realize the nanofluid MQL microgrinding process. Nanodiamond and nano-Al2O3 particles are selected, and the base fluid is paraffin oil. The experimental results show that nanofluid MQL is effective for reducing grinding forces and enhancing surface quality. In addition, it is demonstrated that the type, size and volumetric concentration of nanoparticles are critical parameters to have influence on the performances of micro-grinding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvert, G. M., Ward, E., Schnorr, T. M. and Fine, L. J., “Cancer Risks Among Workers Exposed to Metalworking Fluids: a Systematic Review,” Am. J. Ind. Med., Vol. 33, No. 3, pp. 282–292, 1998.

    Article  Google Scholar 

  2. Klocke, F. and Eisenblatter, G., “Dry cutting,” Annals of CIRP, Vol. 46, No. 2, pp. 519–526, 1997.

    Article  Google Scholar 

  3. Braga, D. U., Diniz, A. E., Miranda, G. W. A. and Coppini, N. L., “Using a Minimum Quantity of Lubricant (MQL) and a Diamond Coated Tool in the Drilling of Aluminum-Silicon Alloys,” J. Mater. Process. Technol., Vol. 122, No. 1, pp. 127–138, 2002.

    Article  Google Scholar 

  4. Hafenbraedle, D. and Malkin, S., “Environmentally-conscious Minimum Quantity Lubrication (MQL) for Internal Cylindrical Grinding,” Trans. NAMRI/SME, Vol. 28, pp. 149–154, 2000.

    Google Scholar 

  5. Hwang, Y. K., Lee, C. M. and Park, S. H., “Evaluation of Machinability According to the Changes in Machine Tools and Cooling Lubrication Environments and Optimization of Cutting Conditions Using Taguchi Method,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 65–73, 2009.

    Article  Google Scholar 

  6. Battez, A. H., Gonzalez, R., Viesca, J. L., Fernandez, J. E., Fernandez, J. M. D., Machado, A., Chou, R. and Riba, J., “CuO, ZrO2 and ZnO nanoparticles as antiwear additives in oil lubricants,” Wear, Vol. 265, No. 3–4, pp. 422–428, 2008.

    Article  Google Scholar 

  7. Yu, W., Xie, H., Chen, L. and Li, Y., “Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol Based ZnO Nanofluid,” Thermochimica Acta, Vol. 491, No. 1–2, pp. 92–96, 2009.

    Article  Google Scholar 

  8. Moghadassi, A. R., Hosseini, S. M., Henneke, D. and Elkamel, A., “A Model of Nanofluid Effective Thermal Conductivity Based on Dimensionless Groups,” J. Therm. Anal. Calorim., Vol. 96, No. 1, pp. 81–84, 2009.

    Article  Google Scholar 

  9. Hwang, Y., Park, H. S., Lee, J. K. and Jung, W. H., “Thermal Conductivity and Lubrication Characteristics of Nanofluids,” Current Applied Physics, Vol. 6S1, pp. e67–e71, 2006.

    Article  Google Scholar 

  10. Ginzburg, B. M., Shibaev, L. A., Kireenko, O. F., Shepelevskii, A. A., Baidakova, M. V. and Sitnikova, A. A., “Antiwear Effect of Fullerene C60 Additives to Lubricating Oils,” Russian J. Appl. Chem., Vol. 75, No. 8, pp. 1330–1335, 2002.

    Article  Google Scholar 

  11. Ku, B. C., Han, Y. C., Lee, J. E., Lee, J. K., Park, S. H. and Hwang, Y. J., “Tribological Effects of Fullerene (C60) Nanoparticles Added in Mineral Lubricants According to its Viscosity,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 4, pp. 607–611, 2010.

    Article  Google Scholar 

  12. Oh, S. M. and Rhee, B. G., “Effects of Tribological Characteristics on Lubricant Properties (The 2nd),” J. of the KSTLE, Vol. 17, No. 4, pp. 335–340, 2001.

    Google Scholar 

  13. Wang, Y., Fernandez, J. E. and Cuervo, D. G., “Rolling-Contact Fatigue Lives of Steel AISI 52100 Balls with Eight Mineral and Synthetic Lubricants,” Wear, Vol. 196, No. 1–2, pp. 110–119, 1996.

    Article  Google Scholar 

  14. Shen, B., Malshe, A. P., Kalita, P. and Shih, A. J., “Performance of Novel MoS2 Nanoparticles Based Grinding Fluids in Minimum Quantity Lubrication Grinding,” Trans. NAMRI/SME, Vol. 36, pp. 357–364, 2008.

    Google Scholar 

  15. Shen, B., Shih, A. J. and Tung, S. C., “Application of Nanofluids in Minimum Quantity Lubrication Grinding,” Tribology Transactions, Vol. 51, No. 6, pp. 730–737, 2008.

    Article  Google Scholar 

  16. Sridharan, U. and Malkin, S., “Effect of Minimum Quantity Lubrication (MQL) with Nanofluids on Grinding Behavior and Thermal Distortion,” Trans. NAMRI/SME, Vol. 37, pp. 629–636, 2009.

    Google Scholar 

  17. Kalita, P., Malshe, A. P., Jiang, W. and Shih, A. J., “Tribological Study of Nano Lubricant Integrated Soybean Oil for Minimum Quantity Lubrication (MQL) Grinding,” Trans. NAMRI/SME, Vol. 38, pp. 137–144, 2010.

    Google Scholar 

  18. Shankara, A., Menezes, P. L., Simha, K. R. Y. and Kailas, S. V., “Study of Solid Lubrication with MoS2 Coating in the Presence of Additives Using Reciprocating Ball-on-Flat Scratch Tester,” Sadhana, Vol. 33, No. 3, pp. 207–220, 2008.

    Article  Google Scholar 

  19. Park, K. H., Shantanu, J., Kwon, P., Drazl, L. T. and Do, I., “Minimum Quantity Lubrication (MQL) with Nanographene Enhanced Lubrication: Ball-Milling Experiment,” Trans. NAMRI/SME, Vol. 38, pp. 81–88, 2010.

    Google Scholar 

  20. Jeng, H. A. and Swanson, J., “Toxicity of Metal Oxide Nanoparticles in Mammalian Cells,” J. Environ. Sci. Health A: Toxic/Hazardous Subst. Environ. Eng., Vol. 41, No. 12, pp. 2699–2711, 2006.

    Article  Google Scholar 

  21. Schrand, A. M., Huang, H., Carlson, C., Schlager, J. J., Osawa, E., Hussain, S. M. and Dai, L., “Are Diamond Nanoparticles Cytotoxic?” J. Phys. Chem. B, Vol. 111, No. 1, pp. 2–7, 2007.

    Article  Google Scholar 

  22. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L. and Behra, R., “Toxicity of Silver Nanoparticles to Chlamydomonas Reinhardtii,” Environ. Sci. Technol., Vol. 42, No. 23, pp. 8959–8964, 2008.

    Article  Google Scholar 

  23. Lee, C. G., Hwang, Y. J., Choi, Y. M., Park, M. C., Kim, K. M., Lee, J. K., Choi, C. and Oh, J. M., “The Comparison of Lubrication Characteristics on the Effects of the Size and Shape of the Nanoparticles Dispersed in Nano Lubricants,” Proc. of the KSTLE Spring Conf., pp. 140–145, 2008.

  24. Lee, C. G., Hwang, Y. J., Choi, Y. M., Lee, J. K., Choi, C. and Oh, J. M., “A Study on the Tribological Characteristics of Graphite Nano Lubricants,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 1, pp. 85–90, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Won Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, PH., Nam, J.S., Li, C. et al. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). Int. J. Precis. Eng. Manuf. 13, 331–338 (2012). https://doi.org/10.1007/s12541-012-0042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0042-2

Keywords

Navigation