Skip to main content
Log in

Hot Deformation Behaviors and Process Parameters Optimization of Low-Density High-Strength Fe–Mn–Al–C Alloy Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of low-density high-strength Fe–Mn–Al–C alloy steel at T = 900-1150 °C and \(\dot{\varepsilon }\) = 0.01-10 s−1 was studied by the Gleeble-3500 thermo-mechanical simulator. The rheological stress curve characteristics of the steel were analyzed through experimental data, and a physical constitutive model considering strain coupling was established. At the same time, the finite element software DEFORM was used to calculate the critical damage value of the steel, and the influence of T and \(\dot{\varepsilon }\) on the maximum damage value was considered. By introducing the dimensionless parameter Zener–Hollomon, the critical damage model was established. Finally, the workability of the steel was evaluated by using the intuitive processing map technology. The results indicated that Fe–Mn–Al–C alloy steel is a positive strain rate-sensitive and a negative temperature-sensitive material, and the constitutive model considering physical parameters can well predict the rheological stress of the steel during hot deformation (R = 0.997). The critical damage factor of Fe–Mn–Al–C alloy steel varies with the change of T and \(\dot{\varepsilon }\), and the range is 0.359-0.535. At the same time, the critical damage factor is more sensitive to \(\dot{\varepsilon }\). At a constant T, the damage factor decreases with the increase of \(\dot{\varepsilon }\). Based on the Prasad instability criterion, the dynamic material model processing map and the microstructure verification after thermal compression, the rheological instability characteristics of the steel are mainly mechanical instability and local plastic flow, and the stable deformation area is mainly characterized by dynamic recrystallization. The optimal hot working process window of the steel is 975-1050 °C/0.01-0.032 s−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.M. Chu, H. Huang, P.W. Kao, D. Gan, Scripta Metall. Mater. 30, 505 (1994)

    Article  CAS  Google Scholar 

  2. I. Zuazo, B. Hallstedt, B. Lindahl, M. Selleby, M. Soler, A. Etienne, A. Perlade, D. Hasenpouth, V. Massardier-Jourdan, S. Cazottes, X. Kleber, JOM 66, 1747 (2014)

    Article  CAS  Google Scholar 

  3. S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater Sci. 89, 345 (2017)

    Article  CAS  Google Scholar 

  4. P. Ren, X.P. Chen, Z.X. Cao, L. Mei, W.J. Li, W.Q. Cao, Q. Liu, Mater. Sci. Eng. A 752, 160 (2019)

    Article  CAS  Google Scholar 

  5. X. Chen, Q. Liao, Y. Niu, W. Jia, Q. Le, C. Cheng, F. Yu, J. Cui, J. Mater. Res. Technol. 8, 1859 (2019)

    CAS  Google Scholar 

  6. P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou, X. Sun, J. Alloy. Compd. 831, 154618 (2020)

    Article  CAS  Google Scholar 

  7. Q.G. Meng, C.G. Bai, D.S. Xu, J. Mater. Sci. Technol. 34, 679 (2018)

    Article  CAS  Google Scholar 

  8. Y.H. Sun, R.C. Wang, J. Ren, C. Peng, Y. Feng, Mech. Mater. 131, 158 (2019)

    Article  Google Scholar 

  9. R.H. Wu, Y. Liu, C. Geng, Q. Lin, Y. Xiao, J. Xu, W. Kang, J. Alloy. Compd. 713, 212 (2017)

    Article  Google Scholar 

  10. J.L. Zhang, D. Raabe, C.C. Tasan, Acta Mater. 141, 374 (2017)

    Article  CAS  Google Scholar 

  11. Z. Li, Y.C. Wang, X.W. Cheng, Z. Li, C. Gao, S. Li, Mater. Sci. Eng. A 822, 141683 (2021)

    Article  CAS  Google Scholar 

  12. Y.B. Tan, Y.H. Ma, F. Zhao, J. Alloy. Compd. 741, 85 (2018)

    Article  CAS  Google Scholar 

  13. M. Detrois, S. Antonov, S. Tin, Paul D. Jablonski, Jeffrey A. Hawk, Mater. Charact. 157, 109915 (2019)

    Article  CAS  Google Scholar 

  14. Y.H. Han, C.S. Li, J.Y. Ren, C. Qiu, E. LI, S. Chen, Met. Mater. Int. 27, 3574 (2021)

    Article  CAS  Google Scholar 

  15. Y.X. Chen, T. Li, Z.H. Gong, J.-Q. Zhao, G. Yang, J. Iron Steel Res. 32, 150 (2020)

    Google Scholar 

  16. H.L. Wei, G.Q. Liu, X. Xiao, M. Zhang, Acta Metall. Sin. 49, 731 (2013)

    Article  CAS  Google Scholar 

  17. F.Q. Yang, Research on the preparation technology and deformation mechanism of automobile light-weight Fe-Mn-Al-C high strength steel, Ph.D. thesis, University of Science and Technology Beijing (2015)

  18. H. Gwon, S. Shin, J. Jeon, T. Song, S. Kim, B.C. De Cooman, Met. Mater. Int. 25, 594 (2019)

    Article  CAS  Google Scholar 

  19. H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)

    Google Scholar 

  20. C.Y. Lu, J. Shi, J. Wang, Mater. Charact. 181, 111455 (2021)

    Article  CAS  Google Scholar 

  21. Z.W. Zhou, H.Y. Gong, J. You, S. Liu, J. He, Mater. Today Commun. 28, 102507 (2021)

    Article  CAS  Google Scholar 

  22. Q.S. Dai, Y.L. Deng, J.G. Tang, Y. Wang, T. Nonferr. Metal. Soc. China 29, 2252 (2019)

    Article  CAS  Google Scholar 

  23. M. Shalbafi, R. Roumina, R. Mahmudi, J. Alloy. Compd. 696, 1269 (2017)

    Article  CAS  Google Scholar 

  24. R. Sowerby, N. Chandrasekaran, Mater. Sci. Eng. 79, 27 (1986)

    Article  Google Scholar 

  25. G.Z. Quan, Y.X. Wang, Y.W. Zhang, F.B. Wang, L. Gao, J. Chongqing Univ. 34, 51 (2011)

    CAS  Google Scholar 

  26. G.Z. Quan, Y. Tong, J. Zhou, J. Funct. Mater. 41, 892 (2010)

    CAS  Google Scholar 

  27. Q. Zhang, Y.F. Fu, Hot Work. Technol. 42, 25 (2013)

    CAS  Google Scholar 

  28. J. Liu, P. Wang, Rare Metal Mat. Eng. 43, 2455 (2014)

    Google Scholar 

  29. M.-S. Chen, W.-Q. Yuan, Y.C. Lin, H.-B. Li, Z.-H. Zou, Vacuum 146, 142 (2017)

    Article  CAS  Google Scholar 

  30. P. Wan, T. Kang, F. Li, P. Gao, L. Zhang, Z. Zhao, J. Mater. Res. Technol. 15, 1059 (2021)

    CAS  Google Scholar 

  31. G.-Z. Quan, G.-S. Li, Y. Wang, J. Zhou, P.-C. LI, Trans. Mater. Heat Treatment 34, 175 (2013)

    CAS  Google Scholar 

  32. P. Wan, H. Zou, K.L. Wang, Z.Z. Zhao, Met. Mater. Int. 27, 4235 (2021)

    Article  CAS  Google Scholar 

  33. C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22 (1944)

    Article  Google Scholar 

  34. Y. Wang, J. Li, Y. Xin, C. Li, Y. Cheng, X. Chen, M. Rashad, B. Liu, Y. Liu, Mater. Sci. Eng. A 768, 138483 (2019)

  35. L. Li, Y. Wang, H. Li, W. Jiang, T. Wang, C.-C. Zhang, F.Wang, H. Garmestani, Comput. Mater. Sci. 166, 221 (2019)

    Article  CAS  Google Scholar 

  36. E. Aryshenskii, J. Hirsch, V. Bazhin, R. Kawalla, U. Pral, T. Nonferr. Metal. Soc. China 29, 893 (2019)

    Article  CAS  Google Scholar 

  37. C.M. Sellars, W.J. Mctegart, Acta Metall. 14, 1136 (1966)

    Article  CAS  Google Scholar 

  38. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883 (1984)

    Article  Google Scholar 

  39. L.Y. Ye, Y.W. Zhai, L.Y. Zhou, H. Wang, P. Jiang, J. Manuf. Process. 59, 535 (2020)

    Article  Google Scholar 

  40. Y.V.R.K. Prasad, J. Mater. Eng. Perform. 12, 638 (2003)

    Article  CAS  Google Scholar 

  41. Y.V.R.K. Prasad, T.Seshacharyulu, Mater. Sci. Eng. A 243, 82 (1998)

    Article  Google Scholar 

  42. Z.-H. Zhang, Y.-N. Liu, X.-K. Liang, Y. She, Mater. Sci. Eng. A 474, 254 (2008)

    Google Scholar 

  43. H. Gwon, J.-K. Kim, B. Jian, H. Mohrbacher, T. Song, S.-K. Kim, B.C. De Cooman, Mater. Sci. Eng. A 711, 130 (2018)

    Article  CAS  Google Scholar 

  44. J.X. Liu, H.B. Wu, S.W. Yang, X. Yu, C. Ding, Mater. Lett. 285, 128999 (2021)

    Article  CAS  Google Scholar 

  45. P.L. Narayana, C.-L. Li, J.-K. Hong, S.-W. Choi, C.H. Park, S.-W. Kim, S.E. Kim, N.S. Reddy, J.-T. Yeom,  Met. Mater. Int. 25, 1063 (2019)

    Article  CAS  Google Scholar 

  46. Y.M. Huo, T. He, S.S. Chen, H. Ji, R. Wu, J. Manuf. Process. 44, 113 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the New Energy Automobile Material Production and Application Demonstration Platform Project (No. TC180A6MR-1) and the Key Research and Development Plan of Shandong Province (No. 2019TSLH0103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huixiang Yu or Zhengzhi Zhao.

Ethics declarations

Conflict of interest

This authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, P., Yu, H., Li, F. et al. Hot Deformation Behaviors and Process Parameters Optimization of Low-Density High-Strength Fe–Mn–Al–C Alloy Steel. Met. Mater. Int. 28, 2498–2512 (2022). https://doi.org/10.1007/s12540-021-01144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01144-x

Keywords

Navigation