Skip to main content
Log in

Study on Metallurgically Prepared Copper-Coated Carbon Fibers Reinforced Aluminum Matrix Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Carbon materials, like carbon fiber, carbon nanotubes and graphene, were widely used as promising reinforcements to strengthen aluminum matrix composites (AMCs). The dispersion of reinforcement in matrix and interface wettability between matrix and reinforcing phase have been key factors affecting AMCs properties. In this study, electroless copper-coated carbon fibers reinforced aluminum (Cu-Cf/Al) composites were prepared by spark plasma sintering processing followed by heat treatment. Microstructure and mechanical properties were investigated. Microstructure observation indicated that fibers distributed uniformly in the composites containing up to 9 wt% copper-coated carbon fibers (Cu-Cf). In addition, an interfacial layer of 50 nm thickness was formed between the fiber and Al matrix due to mutual diffusion of Cu and Al atoms. Vickers hardness, tensile strength and bending strength of 9 wt% Cu-Cf/Al composite increased from 40 to 93 HV, 59 to 190 MPa and 110 to 326 MPa, respectively, compared to Al matrix. The improved mechanical properties are ascribed to the synergistic effect of dispersion, precipitation and solution strengthening. However, the elongation of composite decreased as compared to that of Al matrix. Moreover, Cu-Cf/Al composite exhibits superior corrosion resistance over uncoated carbon fiber/Al composite but less than Al matrix.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available to contact with corresponding author. The processed data required to reproduce these findings are available to contact with corresponding author.

References

  1. N.R. Bandyopadhyay, S. Ghosh, A. Basumallick, Mater. Manuf. Process. 22, 679 (2007)

    Article  CAS  Google Scholar 

  2. J.W. Kaczmar, K. Pietrzak, W. Wlosinski, J. Mater. Process. Tech. 106, 58 (2000)

    Article  Google Scholar 

  3. D.R. Ni, Z.Y. Ma, Acta Metall. Sin. Engl. 27, 739 (2014)

    Article  CAS  Google Scholar 

  4. V.B. Kurapati, R. Kommineni, S. Sundarrajan, T. Indian I. Metals. 71, 1809 (2018). 

    Article  CAS  Google Scholar 

  5. M. Kathiresan, T. Sornakumar, Ind. Lubr. Tribol. 62, 361 (2010)

    Article  Google Scholar 

  6. K.M.S. Manu, T.P.D. Rajan, B.C. Pai, J. Alloy. Compd. 688, 489 (2016)

    Article  CAS  Google Scholar 

  7. J. Zhang, J. Liu, Y. Lu, Y. Liu, T. Li, Mater. Design 182, 108102 (2019)

    Article  Google Scholar 

  8. X. Hao, H. Nie, Z. Ye, Y. Luo, L. Zheng, W. Liang, Mater. Sci. Eng. A 740-741, 218 (2019)

    Article  CAS  Google Scholar 

  9. L. Wu, Z. Zhao, P. Bai, W. Zhao, Y. Li, M. Liang, H. Liao, P. Huo, J. Li, Appl. Surf. Sci. 503, 144156 (2020)

    Article  Google Scholar 

  10. M. Wang, J. Sheng, L.D. Wang, Z.Y. Yang, Z.D. Shi, X.J. Wang, W.D. Fei, J. Alloy. Compd. 816, 153204 (2020)

    Article  Google Scholar 

  11. S. Ranjan, B. Mukherjee, A. Islam, K.K. Pandey, R. Gupta, A.K. Keshri, J. Eur. Ceram. Soc. 40, 660 (2020)

    Article  CAS  Google Scholar 

  12. E. Frank, F. Hermanutz, M.R. Buchmeiser, Macromol. Mater. Eng. 297, 493 (2012)

    Article  CAS  Google Scholar 

  13. S.H. Li, C.G. Chao, Metall. Mater. Trans. A 35, 2153 (2004)

    Article  CAS  Google Scholar 

  14. T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Loeffler, P.J. Uggowitzer, Mater. Sci. Eng. A 448, 1 (2007)

    Article  CAS  Google Scholar 

  15. K. Shirvanimoghaddam, S.U. Hamim, M.K. Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J. Paulo Davim, M. Naebe, Compos. Part A 92, 70 (2017)

    Article  CAS  Google Scholar 

  16. B. Wielage, A. Dorner, Compos. Sci. Technol. 59, 1239 (1999)

    Article  CAS  Google Scholar 

  17. Y. Zhang, L. Yan, M. Miao, Q. Wang, G. Wu, Mater. Design 86, 872 (2015)

    Article  CAS  Google Scholar 

  18. Y. Tang, Y. Deng, K. Zhang, L. Liu, Y. Wu, W. Hu, Ceram. Int. 34, 1787 (2008)

    Article  CAS  Google Scholar 

  19. Z.Z. Zhou, Z.F. Xu, Y. Huan, Chin. J. Nonferrous Met. 26, 773 (2016)

    Article  Google Scholar 

  20. Y. Huang, Q. Ouyang, C. Zhu, J. Zhu, G. Zhang, D. Zhang, B. Mater. Sci. 41, 21 (2018). 

    Article  Google Scholar 

  21. W. Hou, G. Pan, H. Guan, Mater. Heat Treat. 1, 2 (2007)

    Article  Google Scholar 

  22. Y. Tang, L. Liu, W. Li, B. Shen, W. Hu, Appl. Surf. Sci. 255, 4393 (2009)

    Article  CAS  Google Scholar 

  23. L. Gao, H.Z. Wang, J.S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S. Torre, J. Eur. Ceram. Soc. 19, 609 (1999)

    Article  CAS  Google Scholar 

  24. K.H. Jung, S. Nam, S.-S. Kang, B.-C. Ku, Y.H. Bang, J.Y. Hwang, Carbon Lett. 21, 103 (2017)

    Article  Google Scholar 

  25. A. Alten, E. Erzi, O. Gursoy, G.H. Agaoglu, D. Dispinar, G. Orhan, J. Alloy. Compd. 787, 543 (2019)

    Article  CAS  Google Scholar 

  26. Q. Yang, J. Liu, S. Li, F. Wang, T. Wu, Mater. Design 57, 442 (2014)

    Article  CAS  Google Scholar 

  27. S.-I. Oh, J.-Y. Lim, Y.-C. Kim, J. Yoon, G.-H. Kim, J. Lee, Y.-M. Sung,  J.-H. Han, J. Alloy. Compd. 542, 111 (2012)

    Article  CAS  Google Scholar 

  28. S. Gao, J. Chem. Ind. Eng. 6, 1130 (2005)

    Google Scholar 

  29. J.F. Silvain, A. Proult, M. Lahaye, J. Douin, Compos. Part A 34, 1143 (2003)

    Article  CAS  Google Scholar 

  30. M.F. Noor, R.A. Pasha, A. Wakeel, M.A. Nasir, Y. Bilal, Adv. Sci. Technol. Res. J. 11, 80 (2017)

    Article  Google Scholar 

  31. D. Li, G. Chen, L. Jiang, Z. Xiu, Y. Zhang, G. Wu, Mater. Sci. Eng. A 586, 330 (2013)

    Article  CAS  Google Scholar 

  32. A. Urena, J. Rams, M.D. Escalera, M. Sanchez, Compos. Sci. Technol. 65, 2025 (2005)

    Article  CAS  Google Scholar 

  33. B.Bhav Singh, M. Balasubramanian, J. Mater. Process. Tech. 209, 2104 (2009)

    Article  CAS  Google Scholar 

  34. A. Daoud, Mater. Sci. Eng. A 391, 114 (2014)

    Article  CAS  Google Scholar 

  35. H.J. Choi, D.H. Bae, Mater. Sci. Eng. A 528, 2412 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the independent innovation projects of Central South University (2017zzts429) China, and Innovative research team Projects in Dongguan city (2014607101004) China, and Natural Science Foundation of Hunan Province China (No. 2020JJ5100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingping Gao or Ting Lei.

Ethics declarations

Conflict of interest

The authors decalre that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Gao, P., Wang, Y. et al. Study on Metallurgically Prepared Copper-Coated Carbon Fibers Reinforced Aluminum Matrix Composites. Met. Mater. Int. 27, 5425–5435 (2021). https://doi.org/10.1007/s12540-020-00897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00897-1

Keywords

Navigation