Skip to main content
Log in

Investigation on the Creep Behavior of AZ91 Magnesium Alloy Processed by Severe Plastic Deformation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper describes the grain refinement due to equal-channel angular pressing (ECAP) and the creep properties of the ECAP-processed AZ91 magnesium alloy. The resulting microstructure and creep properties were examined by scanning electron microscope and impression creep test method. Microstructural evolution reveals that the grains were refined to 14 µm after four ECAP passes at 628 K, following route Bc. The creep tests were carried out under stresses in the range of 35 to 95 MPa at temperatures in the range of 538 to 583 K. Based on a power law between the impression rate and stress, the stress exponents were about 2 and the activation energies were about 129 kJ/mol, which are close to that for lattice diffusion of magnesium. Considering the obtained results, it can be stated that the grain boundary sliding is the dominant creep mechanism at low stresses and high temperatures.

Graphic Abstract

Deformation mechanism is grain boundary sliding (GBS) during creep of the AZ91 alloy at low stresses and high temperature and deformation behavior can be determined from:

$$\upvarepsilon^{\cdot } = 7.25\left({\frac{{\text{b}}}{{\text{d}}}} \right)^{2} \left({\frac{{\text{Gb}}}{{\text{kT}}}} \right)\left( {\frac{\upsigma}{{\text{G}}}} \right)^{{2.02}} {\text{D}}_{L}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.U. Yan, L.X. Hu, S.U.N. Yu, J.B. Jia, J.F. Jiang, Trans. Nonferrous Met. Soc. China 25, 381 (2015)

    Google Scholar 

  2. X.C. Luo, D.T. Zhang, W.W. Zhang, C. Qiu, D.L. Chen, Mater. Sci. Eng., A 725, 398 (2018)

    CAS  Google Scholar 

  3. G. Zeng, C. Liu, Y. Wan, Y. Gao, S. Jiang, Z. Chen, Mater. Sci. Eng., A 734, 59 (2018)

    CAS  Google Scholar 

  4. B.L. Mordike, T. Ebert, Mater. Sci. Eng., A 302, 37 (2001)

    Google Scholar 

  5. M. Celikin, M. Pekguleryuz, in TMS Annual Meeting & Exhibition (Springer, Cham, 2018), p. 337

  6. D.H. Hou, S.M. Liang, R.S. Chen, C. Dong, E.H. Han, Acta Metall. Sin. (Engl. Lett.) 28, 115 (2015)

    CAS  Google Scholar 

  7. B.A. Esgandari, H. Mehrjoo, B. Nami, S.M. Miresmaeili, Mater. Sci. Eng., A 528, 5018 (2011)

    CAS  Google Scholar 

  8. R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski, Acta Mater. 57, 3683 (2009)

    CAS  Google Scholar 

  9. J. Xu, X. Wang, X. Zhu, M. Shirooyeh, J. Wongsa-Ngam, D. Shan, B. Guo, T.G. Langdon, J. Mater. Sci. 48, 4117 (2013)

    CAS  Google Scholar 

  10. Y. Yuan, A. Ma, X. Gou, J. Jiang, G. Arhin, D. Song, H. Liu, Mater. Sci. Eng., A 677, 125 (2016)

    CAS  Google Scholar 

  11. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, JOM 58, 33 (2006)

    Google Scholar 

  12. T.G. Langdon, Mater. Sci. Eng., A 462, 3 (2007)

    Google Scholar 

  13. R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881 (2006)

    CAS  Google Scholar 

  14. A. Yamashita, D. Yamaguchi, Z. Horita, T.G. Langdon, Mater. Sci. Eng., A 287, 100 (2000)

    Google Scholar 

  15. R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 43, 7366 (2008)

    CAS  Google Scholar 

  16. P.S. Roodposhti, A. Sarkar, K.L. Murty, H. Brody, R. Scattergood, Mater. Sci. Eng., A 669, 171 (2016)

    CAS  Google Scholar 

  17. M. Alvarez-Leal, A. Orozco-Caballero, F. Carreno, O.A. Ruano, Mater. Sci. Eng., A 710, 240 (2018)

    CAS  Google Scholar 

  18. Y.H. Wei, Q.D. Wang, Y.P. Zhu, H.T. Zhou, W.J. Ding, Y. Chino, M. Mabuchi, Mater. Sci. Eng., A 360, 107 (2003)

    Google Scholar 

  19. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng., A 501, 105 (2009)

    Google Scholar 

  20. L. Li, W. Wei, Y. Lin, C. Lijia, L. Zheng, J. Mater. Sci. 41, 409 (2006)

    CAS  Google Scholar 

  21. K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255 (1999)

    CAS  Google Scholar 

  22. B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, S.M. Miresmaeili, Metall. Mater. Trans. A 41, 1973 (2010)

    Google Scholar 

  23. F. Kabirian, R. Mahmudi, Metall. Mater. Trans. A 40, 116 (2009)

    Google Scholar 

  24. R. Jahadi, M. Sedighi, H. Jahed, Mater. Sci. Eng., A 593, 178 (2014)

    CAS  Google Scholar 

  25. S.H. Kang, Y.S. Lee, J.H. Lee, J. Mater. Process. Technol. 201, 436 (2008)

    CAS  Google Scholar 

  26. K.R. Gopi, H.S. Nayaka, S. Sahu, J. Mater. Eng. Perform. 26, 3399–3409 (2017)

    CAS  Google Scholar 

  27. S.B. Xu, Q.I.N. Zhen, L.I.U. Ting, C.N. Jing, G.C. Ren, Trans. Nonferrous Met. Soc. China 22, 61 (2012)

    Google Scholar 

  28. X.M. Feng, T.T. Ai, Trans. Nonferrous Met. Soc. China 19, 293–298 (2009)

    CAS  Google Scholar 

  29. C.W. Chung, R.G. Ding, Y.L. Chiu, W. Gao, J. Phys: Conf. Ser. 241, 012101 (2010)

    Google Scholar 

  30. Y. Yuan, A. Ma, J. Jiang, F. Lu, W. Jian, D. Song, Y.T. Zhu, Mater. Sci. Eng., A 588, 329 (2013)

    CAS  Google Scholar 

  31. B. Chen, D.L. Lin, L. Jin, X.Q. Zeng, C. Lu, Mater. Sci. Eng., A 483, 113 (2008)

    Google Scholar 

  32. K. Ishikawa, H. Watanabe, T. Mukai, Mater. Lett. 59, 1511 (2005)

    CAS  Google Scholar 

  33. F. Yang, J.C. Li, Mater. Sci. Eng., R 74, 233 (2013)

    Google Scholar 

  34. E.M. Mazraeshahi, B. Nami, S.M. Miresmaeili, Mater. Des. 51, 427 (2013)

    Google Scholar 

  35. R.J. Nabariya, S. Goyal, M. Vasudevan, N. Arivazhagan, Mater. Today Proc. 5, 12320 (2018)

    Google Scholar 

  36. M.E. Kassner, M.T. Perez-Prado, Fundamentals of Creep in Metals and Alloys, 1st edn. (Elsevier Science, Amsterdam, 2004)

    Google Scholar 

  37. A. Heczel, F. Akbaripanah, M.A. Salevati, R. Mahmudi, A. Vida, J. Gubicza, J. Alloys Compd. 763, 629 (2018)

    CAS  Google Scholar 

  38. M. Janeček, J. Čížek, J. Gubicza, J. Vrátná, J. Mater. Sci. 47, 7860 (2012)

    Google Scholar 

  39. J.N. Wang, A.J. Schwartz, T.G. Nieh, D. Clemens, Mater. Sci. Eng., A 206, 63 (1996)

    Google Scholar 

  40. R. Mahmudi, R. Alizadeh, A.R. Geranmayeh, Scr. Mater. 64, 521 (2011)

    CAS  Google Scholar 

  41. H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 407, 53 (2005)

    Google Scholar 

  42. S.M. Miresmaeili, B. Nami, Mater. Des. 56, 286 (2014)

    CAS  Google Scholar 

  43. B. Kondori, R. Mahmudi, Mater. Sci. Eng., A 700, 438 (2017)

    CAS  Google Scholar 

  44. S.N.G. Chu, J.C.M. Li, J. Mater. Sci. 12, 2200 (1977)

    CAS  Google Scholar 

  45. J.C. Li, Mater. Sci. Eng., A 322, 23 (2002)

    Google Scholar 

  46. S.M. Miresmaeili, B. Nami, R. Abbasi, I. Khoubrou, JOM 71, 2128–2135 (2019)

    CAS  Google Scholar 

  47. S. Ganguly, A.K. Mondal, Mater. Sci. Eng., A 718, 377 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Nami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoubrou, I., Nami, B. & Miresmaeili, S.M. Investigation on the Creep Behavior of AZ91 Magnesium Alloy Processed by Severe Plastic Deformation. Met. Mater. Int. 26, 196–204 (2020). https://doi.org/10.1007/s12540-019-00318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00318-y

Keywords

Navigation