Skip to main content
Log in

Interfacial Microstructural and Corrosion Characterizations of Friction Stir Welded AA6061-T6 and AISI304 Materials

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The use of aluminum in conjunction of steel can reduce the weight of structures but dissimilar materials welded structure results in the formation of intermetallic compounds and inhomogeneous distribution of grains. Since aluminum is more active than the steel, the structures made from such dissimilar materials can be affected from corrosion medium which needs to be investigated. In the present work, friction stir welding has been used to join AA6061-T6 and AISI304 in lap configuration, each having a thickness of 1 mm under varied process parameters. The detailed investigations have been made which includes understanding the effect of process variables on microstructures, intermetallic compounds and their phases, and thereby on corrosion of the aluminum-steel welded joint. SEM with integrated EBSD detector and XRD analyses have been carried out to characterize the weld interface that revealed the evolution of grain boundaries and existence of phases such as Fe2Al5 and AlCrFe2. The grain size of the weld zone has been found to be decreasing with increase in weld speed and plunge depth. The temperature profiles have shown a faster rate of heating and cooling with increase in welding speed and plunge depth which led to the refinement of microstructure. The evolution precipitates mainly comprised of Al, Mg and Si as the major elements. The corrosion rate was found to be increasing with decrease in grain size. Samples were corroded by pitting corrosion, inter-granular corrosion, and environmental corrosion. Severity of pits have been found to be non-uniform in the along weld cross-section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials. CIRP Ann.: Manuf. Technol. 64, 679–699 (2015)

    Article  Google Scholar 

  2. B.S. Sung, H.S. Bang, S.O. Jeong, W.S. Choi, Y.H. Kwon, H.S. Bang, Effects of processing parameters on the friction stir spot joining of Al5083-O aluminum alloy to DP590 steel. Met. Mater. Int. 23(3), 562–567 (2017)

    Article  Google Scholar 

  3. M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, S. Babu, Influences of process parameters on tensile strength of Friction Stir welded cast A319 aluminium alloy joints. Met. Mater. Int. 15(2), 313–320 (2009)

    Article  Google Scholar 

  4. K.H. Song, Y.D. Chung, K. Nakata, Investigation of microstructure and mechanical properties of friction stir lap jointed Monel 400 and Inconel 600. Met. Mater. Int. 19(3), 571–576 (2013)

    Article  Google Scholar 

  5. M. Almoussawi, A.J. Smith, Thermo—Mechanical effect on poly crystalline boron nitride tool life during friction stir welding (Dwell Period). Met. Mater. Int. 24(3), 560–575 (2018)

    Article  Google Scholar 

  6. L.H. Shah, M. Ishak, Review of research progress on aluminum-steel dissimilar welding. Mater. Manuf. Process. 29(8), 928–933 (2014)

    Article  Google Scholar 

  7. M.-G. Jo et al., Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Met. Mater. Int. 24(1), 73–83 (2018)

    Article  Google Scholar 

  8. W.M. Thomas, Patent friction welding Thomas TWI. (1995)

  9. M. Dehghani, A. Amadeh, S.A.A. Akbari Mousavi, Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater. Des. 49, 433–441 (2013)

    Article  Google Scholar 

  10. H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Mater. Des. 26(1), 41–46 (2005)

    Article  Google Scholar 

  11. Z. Shen, Y. Chen, M. Haghshenas, A.P. Gerlich, Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds. Eng. Sci. Technol. Int. J. 18, 8–15 (2015)

    Google Scholar 

  12. Y.C. Chen, A. Gholinia, P.B. Prangnell, Interface structure and bonding in abrasion circle friction stir spot welding: a novel approach for rapid welding aluminium alloy to steel automotive sheet. Mater. Chem. Phys. 134(1), 459–463 (2012)

    Article  Google Scholar 

  13. C. Chen, R. Kovacevic, Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. Int. J. Mach. Tools Manuf 44(11), 1205–1214 (2004)

    Article  Google Scholar 

  14. A. Carreon-Alvarez et al., Corrosion of aluminum, copper, brass and stainless steel 304 in tequila. Int. J. Electrochem. Sci. 7, 7877–7887 (2012)

    Google Scholar 

  15. F. Gharavi, K.A. Matori, R. Yunus, N.K. Othman, F. Fadaeifard, Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process. J. Mater. Res. Technol. 4, 1–9 (2015)

    Article  Google Scholar 

  16. T.D. Clark. An analysis of microstructure and corrosion resistance in underwater friction stir welded 304L stainless steel. Published dissertation, Brigham Young University, Provo, United States (2005)

  17. E.T. Akinlabi, A. Andrews, S.A. Akinlabi, Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper. Trans. Nonferrous Met. Soc. China 24(5), 1323–1330 (2014)

    Article  Google Scholar 

  18. S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Corrosion properties in friction stir welded 304 austenitic stainless Steel. Weld. World 49, 63–68 (2005)

    Article  Google Scholar 

  19. K. Surekha, B.S. Murty, K. Prasad Rao, Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy. Solid State Sci. 11(4), 907–917 (2009)

    Article  Google Scholar 

  20. K. Surekha, B.S. Murty, K.P. Rao, Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surf. Coatings Technol. 202(17), 4057–4068 (2008)

    Article  Google Scholar 

  21. W. Xu, J. Liu, Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate. Corros. Sci. 51(11), 2743–2751 (2009)

    Article  Google Scholar 

  22. B. Seo, K. Hyun, S. Kwangsuk, Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel. Met. Mater. Int. no, 0123456789 (2018)

    Google Scholar 

  23. Z.L. Hu, X.S. Wang, S.J. Yuan, Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy. Mater. Charact. 73, 114–123 (2012)

    Article  Google Scholar 

  24. S.H. Kang, H.N. Han, K.H. Oh, J.H. Cho, C.G. Lee, S.J. Kim, Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy. Met. Mater. Int. 15(6), 1027–1031 (2009)

    Article  Google Scholar 

  25. Z. Zhang, B.L. Xiao, Z.Y. Ma, Enhancing mechanical properties of friction stir welded 2219Al-T6 joints at high welding speed through water cooling and post-welding artificial ageing. Mater. Charact. 106, 255–265 (2015)

    Article  Google Scholar 

  26. Y.B. Tan et al., A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding. Mater. Charact. 127, 41–52 (2017)

    Article  Google Scholar 

  27. N.-K. Kim, B.-C. Kim, Y.-G. An, B.-H. Jung, S.-W. Song, C.-Y. Kang, The effect of material arrangement on mechanical properties in Friction Stir Welded dissimilar A5052/A5J32 aluminum alloys. Met. Mater. Int. 15(4), 671–675 (2009)

    Article  Google Scholar 

  28. Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy. Mater. Sci. Eng., A 415(1–2), 250–254 (2006)

    Article  Google Scholar 

  29. Y. Templeman, G. Ben Hamu, L. Meshi, Friction stir welded AM50 and AZ31 Mg alloys: microstructural evolution and improved corrosion resistance. Mater. Charact. 126, 86–95 (2017)

    Article  Google Scholar 

  30. K.D. Ralston, D. Fabijanic, N. Birbilis, Effect of grain size on corrosion of high purity aluminium. Electrochim. Acta 56(4), 1729–1736 (2011)

    Article  Google Scholar 

  31. G.R. Argade, S.K. Panigrahi, R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci. 58, 145–151 (2012)

    Article  Google Scholar 

  32. Y. Lin, Z. Zheng, Microstructural evolution of 2099 Al[sbnd]Li alloy during friction stir welding process. Mater. Charact. 123, 307–314 (2017)

    Article  Google Scholar 

  33. A. Polat, M. Avsar, F. Ozturk, Effects of the artificial-aging temperature and time on the mechanical properties and springback behavior of AA6061. Mater. Tehnol. 49(4), 487–493 (2015)

    Article  Google Scholar 

  34. W. Tao, Z. Yong, K. Matsuda, Precipitation in the nugget zone of AA6061-T6 by friction stir welding. Chiang Mai J. Sci. 43(2), 409–419 (2016)

    Google Scholar 

  35. G. Georges, Localized corrosion of 1913 T240 aluminium alloy in chloride media. Corros. Sci. 41, 310–327 (1913)

    Google Scholar 

  36. K. Kimapong, T. Watanabe, Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Mater. Trans. 46(4), 835–841 (2005)

    Article  Google Scholar 

  37. R.P. Mahto, R. Bhoje, S.K. Pal, H.S. Joshi, S. Das, A study on mechanical properties in friction stir lap welding of AA 6061-T6 and AISI 304. Mater. Sci. Eng., A 652, 136–144 (2016)

    Article  Google Scholar 

  38. R.P. Mahto, R. Kumar, S.K. Pal, S.K. Panda, A comprehensive study on force, temperature, mechanical properties and micro-structural characterizations in friction stir lap welding of dissimilar materials (AA6061-T6 & AISI304). J. Manuf. Process. 31, 624–639 (2018)

    Article  Google Scholar 

  39. X. Liu, S. Lan, J. Ni, Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J. Mater. Process. Technol. 219, 112–123 (2015)

    Article  Google Scholar 

  40. X. Wang, J.V. Wood, Y. Sui, H. Lu, Formation of intermetallic compound in iron-aluminum alloys. J. Shanghai Univ. (English Ed. 2(4), 305–310 (1998)

    Article  Google Scholar 

  41. A. Bouayad, C. Gerometta, A. Belkebir, A. Ambari, Kinetic interactions between solid iron and molten aluminium. Mater. Sci. Eng., A 363(1–2), 53–61 (2003)

    Article  Google Scholar 

  42. S. Kobayashi, T. Yakou, Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater. Sci. Eng., A 338, 44–53 (2002)

    Article  Google Scholar 

  43. K. Bouché, F. Barbier, A. Coulet, Intermetallic compound layer growth between solid iron and molten aluminium. Mater. Sci. Eng., A 249(1–2), 167–175 (1998)

    Article  Google Scholar 

  44. A. Yazdipour, A. Heidarzadeh, Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys. Int. J. Adv. Manuf. Technol. 87(9–12), 3105–3112 (2016)

    Article  Google Scholar 

  45. R.A. Rodríguez-Díaz et al., Corrosion behavior of Fe-Al alloy modified with Cr and Ti in simulated physiological human media. Int. J. Electrochem. Sci. 8(1), 958–972 (2013)

    Google Scholar 

  46. Y.-S. Kim, Y.-H. Kim, Sliding wear behavior of Fe3Al-based alloys. Mater. Sci. Eng., A 258(1–2), 319–324 (1998)

    Article  Google Scholar 

  47. Z. Szklarska-Smialowska, Pitting corrosion of aluminum. Corros. Sci. 41(9), 1743–1767 (1999)

    Article  Google Scholar 

  48. U. Donatus, G.E. Thompson, X. Zhou, J. Wang, A. Cassell, K. Beamish, Corrosion susceptibility of dissimilar friction stir welds of AA5083 and AA6082 alloys. Mater. Charact. 107, 85–97 (2015)

    Article  Google Scholar 

  49. C. Liu, D.L. Chen, S. Bhole, X. Cao, M. Jahazi, Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Mater. Charact. 60(5), 370–376 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya Kanta Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahto, R.P., Anishetty, S., Sarkar, A. et al. Interfacial Microstructural and Corrosion Characterizations of Friction Stir Welded AA6061-T6 and AISI304 Materials. Met. Mater. Int. 25, 752–767 (2019). https://doi.org/10.1007/s12540-018-00222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00222-x

Keywords

Navigation