Skip to main content
Log in

Synthesis and characterization of WC-Co nanosized composite powders with in situ carbon and gas carbon sources

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study presented nanosized WC-Co composite powders synthesized using a one-step reduction-carbonization process with a combination of CH4/H2 as a gas carbon source and soluble starch as an in situ carbon source. The results of carbon analysis and X-ray diffraction revealed that WC-Co nanocomposite powders with a pure WC and Co phase could be obtained at 1100 °C after 0.5 h. A higher gas flow ratio of CH4/H2 during the reduction-carbonization process led to a higher total carbon content of the sample. A field emission scanning electron microscope confirmed that the particles in the WC-6 wt% Co composite powders had the lowest average size of 43 nm with equiaxed shapes. A sintering neck was observed in the WC-3 wt% Co composite powders whereas faceted particles were found in the WC-12 wt% Co composite powders. Moreover, this method has advantages of simple processing, rapid synthesis and good applicability in potential industry application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Chen, P. K. Nayak, H. T. Lin, M. P. Chang, and J. L. Huang, Int. J. Refract. Met. H. 47, 44 (2014).

    Article  Google Scholar 

  2. S. Norgren, J. García, A. Blomqvist, and L. Yin, Int. J. Refract. Met. H. 48, 31 (2015).

    Article  Google Scholar 

  3. I. Konyashin and L. I. Klyachko, Int. J. Refract. Met. H. 49, 9 (2015).

    Article  Google Scholar 

  4. M. Blandaa, A. Duszová, T. Csanádi, T. Csanádi, P. Hvizdoš, F. Lofaj, and J. Dusza, J. Eur. Ceram. Soc. 34, 3407 (2014).

    Article  Google Scholar 

  5. N. Lin, Y. H. He, C. H. Wu, Q. K Zhang, J. Zou, and Z. W Zhao, Scripta Mater. 67, 826 (2012).

    Article  Google Scholar 

  6. S. A. Hewitt and K. A. Kibble, Int. J. Refract. Met. H. 27, 937 (2009).

    Article  Google Scholar 

  7. M. Jafari, M. H. Enayati, M. Salehi, S. M. Nahvi, and C. G. Park, Ceram. Int. 40, 11031 (2014).

    Article  Google Scholar 

  8. G. E. Spriggs, Int. J. Refract. Met. H. 13, 241 (1995).

    Article  Google Scholar 

  9. X. M. Ma and G. Ji, J. Alloys. Compd. 245, 30 (1996).

    Article  Google Scholar 

  10. M. I. Dvornik, Int. J. Refract. Met. H. 28, 523 (2010).

    Article  Google Scholar 

  11. G. Singla, K. Singh, and O. P. Pandey, Ceram. Int. 40, 5157 (2014).

    Article  Google Scholar 

  12. F. L. Zhang, C. Y. Wang, and M. Zhu, Scripta Mater. 49, 1123 (2003).

    Article  Google Scholar 

  13. M. H. Enayati, G. R. Aryanpour, and A. Ebnonnasir, Int. J. Refract. Met. H. 27, 159 (2009).

    Article  Google Scholar 

  14. H. N. Meng, Z. Z. Zhang, F. X. Zhao, and T. Qiu, Int. J. Refract. Met. H. 41, 191 (2013).

    Article  Google Scholar 

  15. W. Su, Y. X. Sun, J. Feng, J. Liu and J. M. Ruan, Int. J. Refract. Met. H. 48, 369 (2015).

    Article  Google Scholar 

  16. M. W. R. Holgate, T. Schoberl, and S. R. Hall, J. Sol-Gel Sci. Technol. 49, 145 (2009).

    Article  Google Scholar 

  17. Z. Zhang, S. Wahlberg, M. Wang, and M. Muhammed, NanoStruct. Mater. 12, 163 (1999).

    Article  Google Scholar 

  18. T. G. Ryu, H. Y. Sohn, K. S. Hwang, and Z. Z. Fang, Ind. Eng. Chem. Res. 47, 9384 (2008).

    Article  Google Scholar 

  19. H. H. Nersisyan, H. I. Won, C. W. Won, and J. H. Lee, Mater. Chem. Phys. 94, 153 (2005).

    Article  Google Scholar 

  20. H. Lin, B. W. Tao, J. Xiong, Q. Li, and Y. Li, Ceram. Int. 39, 2877 (2013).

    Article  Google Scholar 

  21. H. Preiss, B. Meyer, and C. Olschewski, J. Mater. Sci. 33, 713 (1998).

    Article  Google Scholar 

  22. C. Davidson and G. B. Alexander, Metall. Trans. B 9, 533 (1978).

    Article  Google Scholar 

  23. F. F. P. de Medeiros, A. G. P. da Silva, C. P. de Souza, and U. U. Gomes, Int. J. Refract. Met. H. 27, 43 (2009).

    Article  Google Scholar 

  24. A. F. Guillermet, Metall. Trans. B 20, 935 (1989).

    Article  Google Scholar 

  25. Z. G. Ban and L. L. Shaw, Acta Mater. 49, 2933 (2001).

    Article  Google Scholar 

  26. P. Li, Z. W. Liu, L. Q. Cui, F. Q Zhai, Q. Wan, Z. L. Li, Z. Z. Fang, A. A. Volinsky, and X. H. Qu, Int. J. Hydrogen Energ. 39, 10911 (2014).

    Article  Google Scholar 

  27. W. B. Liu, X. Y. Song J. X. Zhang, G. Z. Zhang, and X. M. Liu, Mater. Chem. Phys. 109, 235 (2008).

    Article  Google Scholar 

  28. H. R. de Macedo, A. G. P. da Silvab, and D. M. A. de Melo, Mater. Lett. 57, 3924 (2003).

    Article  Google Scholar 

  29. W. Su, Y. X. Sun, H. F. Wang, X. Q. Zhang, and J. M. Ruan, Int. J. Refract. Met. H. 45, 80 (2014).

    Article  Google Scholar 

  30. M. F. Zawrah, Ceram. Int. 33, 155 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailin Yang or Jianming Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Yang, J., Yang, H. et al. Synthesis and characterization of WC-Co nanosized composite powders with in situ carbon and gas carbon sources. Met. Mater. Int. 22, 663–669 (2016). https://doi.org/10.1007/s12540-016-6033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6033-6

Keywords

Navigation