Skip to main content
Log in

Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The flow behaviour of a ferritic stainless steel (FSS) was investigated by a Gleeble 3500 thermal-mechanical test simulator over the temperature range of 900–1100 °C and strain rate range of 1–50 s−1. Empirical and phenomenological constitutive models were established, and a comparative study was made on the predictability of them. The results indicate that the flow stress decreases with increasing the temperature and decreasing the strain rate. High strain rate may cause a drop in flow stress after a peak value due to the adiabatic heating. The Zener-Hollomon parameter depends linearly on the flow stress, and decreases with raising the temperature and reducing the strain rate. Significant deviations occur in the prediction of flow stress by the Johnson-Cook (JC) model, indicating that the JC model cannot accurately track the flow behaviour of the FSS during hot deformation. Both the multiple-linear and the Arrhenius-type models can track the flow behaviour very well under the whole hot working conditions, and have much higher accuracy in predicting the flow behaviour than that of the JC model. The multiple-linear model is recommended in the current work due to its simpler structure and less time needed for solving the equations relative to the Arrhenius-type model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. L. Lai, C. H. Shek, and K. H. Lo, Stainless Steels: An Introduction and Their Recent Development, p. 8, Bentham Science Publishers, Sharjah (2012).

    Google Scholar 

  2. X. Cheng, Z. Jiang, D. Wei, J. Zhao, B. J. Monaghan, R. J. Longbottom, and L. Jiang, Surf. Coat. Technol. 258, 257 (2014).

    Article  Google Scholar 

  3. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang, Mater. Des. 65, 682 (2015). Fig. 16. Verification of the developed multiple-linear and Arrheniustype models by a new experimental result which has not been used for fitting analysis.

    Article  Google Scholar 

  4. M. Alizadeh-Sh, S. P. H. Marashi, and M. Pouranvari, Mater. Des. 56, 258 (2014).

    Article  Google Scholar 

  5. V. Villaret, F. Deschaux-Beaume, C. Bordreuil, S. Rouquette, and C. Chovet, J. Mater. Process. Technol. 213, 1538 (2013).

    Article  Google Scholar 

  6. T. J. Park, J. P. Kong, S. H. Uhm, I. S. Woo, J. S. Lee, and C. Y. Kang, J. Mater. Process. Technol. 211, 415 (2011).

    Article  Google Scholar 

  7. J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, and Z. Jiang, Comput. Mater. Sci. 92, 47 (2014).

    Article  Google Scholar 

  8. J. Zhao, H. Ding, Z. Jiang, D. Wei, and K. Linghu, Metall. Mater. Trans. A 45, 4932 (2014).

    Article  Google Scholar 

  9. S. Saadatkia, H. Mirzadeh, and J. M. Cabrera, Mater. Sci. Eng. A 636, 196 (2015).

    Article  Google Scholar 

  10. I. Mejia, F. Reyes-Calderon, and J. M. Cabrera, Mater. Sci. Eng. A 644, 374 (2015).

    Article  Google Scholar 

  11. H. Mirzadeh, Mech. Mater. 85, 66 (2015).

    Article  Google Scholar 

  12. J. Luo, M. Li, X. Li, and Y. Shi, Mech. Mater. 42, 157 (2010).

    Article  Google Scholar 

  13. Q. C. Fan, X. Q. Jiang, Z. H. Zhou, W. Ji, and H. Q. Cao, Mater. Des. 65, 193 (2015).

    Article  Google Scholar 

  14. J. Zhao, H. Ding, W. Zhao, and Z. Jiang, J. Alloy. Compd. 574, 407 (2013).

    Article  Google Scholar 

  15. S. A. S. Vanini, M. Abolghasemzadeh, and A. Assadi, Metall. Mater. Trans. A 44, 3376 (2013).

    Article  Google Scholar 

  16. S. V. Mehtonen, L. P. Karjalainen, and D. A. Porter, Mater. Sci. Eng. A 571, 1 (2013).

    Article  Google Scholar 

  17. S. V. Mehtonen, L. P. Karjalainen, and D. A. Porter, Mater. Sci. Eng. A 607, 44 (2014).

    Article  Google Scholar 

  18. F. Gao, Z. Liu, R. D. K. Misra, H. Liu, and F. Yu, Met. Mater. Int. 20, 939 (2014).

    Article  Google Scholar 

  19. H. Honjo, M. Mikami, M. Yamaguchi, and H. Ishii, IHI Eng. Rev. 42, 32 (2009).

    Google Scholar 

  20. S. Mehtonen, The Behavior of Stabilized High-Chromium Ferritic Stainless Steels in Hot Deformation, p. 84, University of Oulu, Oulu (2014).

    Google Scholar 

  21. J. Yan, Q. L. Pan, B. Li, Z. Q. Huang, Z. M. Liu, and Z. M. Yin, J. Alloy. Compd. 632, 549 (2015).

    Article  Google Scholar 

  22. J. C. Hu, H. M. Song, M. Yu, and L. Z. Jiang, J. Iron Steel Res. Int. (Supplement 1) 14, 183 (2007).

    Article  Google Scholar 

  23. L. Samek, E. De Moor, J. Penning, and B. C. De Cooman, Metall. Mater. Trans. A 37, 109 (2006).

    Article  Google Scholar 

  24. D. N. Zou, Y. Han, D. N. Yan, D. Wang, W. Zhang, and G. W. Fan, Mater. Des. 32, 4443 (2011).

    Article  Google Scholar 

  25. Y. Han, G. Qiao, J. Sun, and D. Zou, Comput. Mater. Sci. 67, 93 (2013).

    Article  Google Scholar 

  26. J. Liu, H. Chang, R. Wu, T. Y. Hsu, and X. Ruan, Mater. Charact. 45, 175 (2000).

    Article  Google Scholar 

  27. Z. Xu and F. Huang, Acta Mech. Solida Sin. 25, 598 (2012).

    Article  Google Scholar 

  28. G. R. Johnson and W. H. Cook, Proceedings of the Seventh International Symposium on Ballistic, pp. 541–547, The Hague, The Netherlands (1983).

    Google Scholar 

  29. Z. Akbari, H. Mirzadeh, and J. M. Cabrera, Mater. Des. 77, 126 (2015).

    Article  Google Scholar 

  30. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, 2nd ed., p. 384, Cambridge University Press, UK (2009).

    Google Scholar 

  31. R. Liang and Z. Khan, Int. J. Plast. 15, 963 (1999).

    Article  Google Scholar 

  32. E. P. Chen, Special Steel 13, 28 (1992).

    Google Scholar 

  33. Y. C. Lin, Q. F. Li, Y. C. Xia, and L. T. Li, Mater. Sci. Eng. A 534, 654 (2012).

    Article  Google Scholar 

  34. H. Shin and J. B. Kim, J. Eng. Mater. Technol. 132, 021009 (2010).

    Article  Google Scholar 

  35. D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, 5th ed., p. 449, John Wiley & Sons, Inc., Manhattan (2010).

    Google Scholar 

  36. C. M. Sellars and W. J. McTegart, Acta Metall. 14, 1136 (1966).

    Article  Google Scholar 

  37. S. Wang, L. G. Hou, J. R. Luo, J. S. Zhang, and L. Z. Zhuang, J. Mater. Process. Technol. 225, 110 (2015).

    Article  Google Scholar 

  38. J. W. Zhao, H. Ding, H. L. Hou, and Z. Q. Li, J. Alloy. Compd. 491, 673 (2010).

    Article  Google Scholar 

  39. D. Samantaray, S. Mandal, and A. K. Bhaduri, Comput. Mater. Sci. 47, 568 (2009).

    Article  Google Scholar 

  40. J. W. Zhao, H. Ding, Y. Q. Wang, and H. L. Hou, Trans. Nonferrous Met. Soc. China 19, 65 (2009).

    Article  Google Scholar 

  41. C. Zener and J. H. Hollomon, J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  42. F. Pilehva, A. Zarei-Hanzaki, S. M. Fatemi-Varzaneh, and A. R. Khalesian, J. Mater. Eng. Perform. 24, 1799 (2015).

    Article  Google Scholar 

  43. H. Y. Wu, F. J. Zhu, S. C. Wang, W. R. Wang, C. C. Wang, and C. H. Chiu, J. Mater. Sci. 47, 3971 (2012).

    Article  Google Scholar 

  44. L. Tang and J. D. Baeder, SIAM J. Sci. Comput. 20, 1115 (1998).

    Article  Google Scholar 

  45. S. Asgari, E. El-Danaf, S. R. Kalidindi, and R. D. Doherty, Metall. Mater. Trans. A 28, 1781 (1997).

    Article  Google Scholar 

  46. S. V. Mehtonen, E. J. Palmiere, R. D. K. Misra, L. P. Karjalainen, and D. A. Porter, Mater. Sci. Eng. A 601, 7 (2014).

    Article  Google Scholar 

  47. R. Z. Wang and T. C. Lei, Scr. Metall. Mater. 31, 1193 (1994).

    Article  Google Scholar 

  48. G. Glover and C.M. Sellars, Metall. Trans. A 4, 765 (1973).

    Article  Google Scholar 

  49. H. Yagi, N. Tsuji, and Y. Saito, Tetsu-to-Hagane, 86, 349 (2000).

    Google Scholar 

  50. D. Raabe and K. Lüucke, Mater. Sci. Technol. 9, 302 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Jiang, Z., Zu, G. et al. Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures. Met. Mater. Int. 22, 474–487 (2016). https://doi.org/10.1007/s12540-016-5541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5541-8

Keywords

Navigation