Skip to main content
Log in

Quantitative analysis of strength and plasticity of a 304 stainless steel based on the stress-strain curve

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A constitutive model including the kinetics of twinning and martensitic transformation has been established based on the dislocation theory and the mixture law. The stress-strain curve of a 304 stainless steel has been measured by a tensile test. The material constants for the constitutive model are then found through an inverse analysis of the stress-strain curve measured experimentally, determining the stress-strain relationship equation and the kinetics of twinning and martensitic transformation of the investigated alloy. The volume fractions of martensitic transformation have been measured by the magnetic tester of Fischer Model MP3C. It has been shown that the calculated stress-strain curve and the volume fractions of martensitic transformation are in agreement with those obtained from experimental measurements, demonstrating that the material constants found by using the stress-strain curve can capture the underlying materials science of deformation. On this basis, the influence of twins, martensitic transformation, and mechanical behavior of austenite and martensite on the strength and plasticity of the 304 stainless steel has been discussed further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Das, S. Sivaprasad, M. Ghosh, P. C. Chakraborti, and S. Tarafder, Mater. Sci. Eng. A 486, 283 (2008).

    Article  Google Scholar 

  2. J. Talonen and H. Hanninen, Acta Mater. 55, 6108 (2007).

    Article  Google Scholar 

  3. J. A. Rodriguez-Martinez, R. Pesci, and A. Rusinek, Mater. Sci. Eng. A 528, 5974 (2011).

    Article  Google Scholar 

  4. A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, and J. Lu, Acta Mater. 59, 3697 (2011).

    Article  Google Scholar 

  5. M. N. Gussevn, J. T. Busby, T. S. Byun, and C. M. Parish, Mater. Sci. Eng. A 588, 299 (2013).

    Article  Google Scholar 

  6. W.-S. Lee, C.-F. Lin, T.-H. Chen, and M.-C. Yang, Mater. Sci. Eng. A 527, 3127 (2010).

    Article  Google Scholar 

  7. I. Shakhova, V. Dudkoa, A. Belyakov, K. Tsuzaki, and R. Kaibyshev, Mater. Sci. Eng. A 545, 176 (2012).

    Article  Google Scholar 

  8. K. Spencer, J. D. Embury, K. T. Conlon, M. Véron, and Y. Bréchet, Mater. Sci. Eng. A 387-389, 873 (2004).

    Article  Google Scholar 

  9. S. Gallee, P. Y. Manach, and S. Thuillier, Mater. Sci. Eng. A 466, 47 (2007).

    Article  Google Scholar 

  10. B. Petit, N. Gey, M. Cherkaoui, B. Bolle, and M. Humbert, Int. J. Plast. 23, 323 (2007).

    Article  Google Scholar 

  11. H. C. Shin, T. K. Ha, and Y. W. Chang, Scripta Mater. 45, 823 (2001).

    Article  Google Scholar 

  12. O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).

    Article  Google Scholar 

  13. S. Allain, J.-P. Chateau, D. Dahmoun, and O. Bouaziz, Mater. Sci. Eng. A 387-389, 272 (2004).

    Article  Google Scholar 

  14. A. Perlade, O. Bouaziz, and Q. Furnemont, Mater. Sci. Eng. A 356, 145 (2003).

    Article  Google Scholar 

  15. J. Bouquerel, K. Verbeken, and B. C. de Cooman, Acta Mater. 54, 1443 (2006).

    Article  Google Scholar 

  16. S. Allain and O. Bouaziz, Mater. Sci. Eng. A 496, 329 (2008).

    Article  Google Scholar 

  17. A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, Acta Mater. 73, 298 (2014).

    Article  Google Scholar 

  18. O. Bouaziz and N. Guelton, Mater. Sci. Eng. A 319-321, 246 (2001).

    Article  Google Scholar 

  19. I. Karaman, H. Sehitoglu, A. J. Beaudoin, Y. I. Chumlyakov, H. J. Maier, and C. N. Tomé, Acta Mater. 48, 2031 (2000).

    Article  Google Scholar 

  20. D. R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, G.-U. Ivan, S.-A. Alireza, T. Hickel, F. Roters, and D. Raabe, Acta Mater. 61, 494 (2013).

    Article  Google Scholar 

  21. S. Allain, J. P. Chateau, and O. Bouaziz, Mater. Sci. Eng. A 387-389, 143 (2004).

    Article  Google Scholar 

  22. L. Delannay, P. Jacques, and T. Pardoen, Int. J. Solids Struct. 45, 1825 (2008).

    Article  Google Scholar 

  23. X. Liang, J. R. McDermid, O. Bouaziz, X. Wang, J. D. Embury, and H. S. Zurob, Acta Mater. 57, 3978 (2009).

    Article  Google Scholar 

  24. E. S. Perdahcioglu and H. J. M. Geijselaers, Acta Mater. 60, 4409 (2012).

    Article  Google Scholar 

  25. P.-Q. Angeline, B. Stephanie, J.-B. Vogt, J.-C. Glez, and J.-D. Mithieux, ISIJ Int. 49, 293 (2009).

    Article  Google Scholar 

  26. J. Y. Choi, J. H. Ji, S. W. Hwang, and K.-T. Park, Mater. Sci. Eng. A 528, 6012 (2011).

    Article  Google Scholar 

  27. L. Pei, L. Zhiming, D. Binkang, S. Laimin, and Z. Shenjin, Light Industry Machinery 31, 88 (2013).

    Google Scholar 

  28. E. Ishimaru, H. Hamasaki, and F. Yoshida, J. Mater. Process. Tech. 223, 34 (2015).

    Article  Google Scholar 

  29. B. Ravi Kumar, A. K. Singh, S. Das, and D. K Bhattacharya, Mater. Sci. Eng. A 364, 132 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, S., Ye, B. et al. Quantitative analysis of strength and plasticity of a 304 stainless steel based on the stress-strain curve. Met. Mater. Int. 22, 391–396 (2016). https://doi.org/10.1007/s12540-016-5466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5466-2

Keywords

Navigation