Skip to main content
Log in

Effect of 1, 2, 3-benzotriazole on the corrosion properties of 316L stainless steel in synthetic tap water

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study examines the effect of the benzotriazole on the corrosion properties of 316L stainless steel in synthetic tap water. Electrochemical tests, surface analyses and quantum study were conducted for evaluating corrosion behavior and adsorption mechanism. In case of stainless steel in the synthetic tap water, the adsorption layer of benzotriazole is not uniform due to the low adsorption. The benzotriazole is preferred to ionic state in alkaline condition like synthetic tap water. Thus, the formation of metal-benzotriazole complex was difficult, and which confirmed in FT-IR analysis. The ionic state of benzotrizole in alkaline environment caused the electrostatic repulsion force and the strong tendency of donating electron obstructed the adsorption of ionic benzotirzole. In addition, the lack of d-orbital of Cr made hard to adsorption of the benzotrizle on the stainless steel. This non-uniform adsorption layer of benzotriazole on the stainless steel surface induced the localized defect sites which decrease the pitting resistance of stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed., pp.1–10, John Wiley & Sons, Inc., New York (1996).

    Google Scholar 

  2. M. G. Fontanas and N. D. Greence, Corrosion Engineering, 2nd ed., p.163, McGraw-Hill, New York (1978).

    Google Scholar 

  3. C. P. Cutler, 4 th European Stainless Steel Science and Market Congress, pp.10–13, ESSC, Paris (2002).

    Google Scholar 

  4. Y. M. Hyun, H. Kim, and Y. H. Kim, Met. Meter. Int. 20, 249 (2014).

    Article  Google Scholar 

  5. T. H. Hwang, J. H. Kim, K. H. Kim, W. J. Moon, and C. Y. Kang, Met. Meter. Int. 20, 19 (2014).

    Article  Google Scholar 

  6. H. J. Yong and H. W. Lee, Korean J. Met. Mater. 51, 349 (2013).

    Google Scholar 

  7. E. A. Add El Meguid, N. A. Mahmoud, and V. K. Gouda, Brit. Corros. J. 33, 42 (1998).

    Article  Google Scholar 

  8. A. U. Malik, P. C. M. Kutty, N. A. Siddiqi, I. N. Andijani, and S. Ahmed, Corros. Sci. 33, 1809 (1992).

    Article  Google Scholar 

  9. M. A. Beckett, V. L. Snoeyink, K. Jim, P. Sarin, W. M. Kriven, D. A. Lytle, and J. A. Clement, A Pipe Loop System for Evaluating Iron Uptake in Distribution Systems, pp.1–5, American Water Works Association-Water Quality Technology Conference, San Diego, CA, USA (1998).

    Google Scholar 

  10. R. J. Oliphant, Cause of Copper Corrosion in Plumbing System, pp.10–12, Foundation for Water Research, Marlow, U.K. (2010).

    Google Scholar 

  11. M. M. Antonijevic and M. B. Petrovic, Int. J. Electorochem. Soc. 3, 1 (2008).

    Google Scholar 

  12. E. S. Ferreria, C. Giacomelli, F. C. Giacomelli, and A. Spinelli, Mater. Chem. Phys. 83, 129 (2004).

    Article  Google Scholar 

  13. I. Sekine, Y. Nakahata, and H. Tanabe, Corros. Sci. 28, 987 (1988).

    Article  Google Scholar 

  14. M. Finšgar and I. Milošev, Corros. Sci. 52, 2737 (2010).

    Article  Google Scholar 

  15. A. Popova, M. Christov, and A. Zwetanova, Corros. Sci. 49, 2131 (2007).

    Article  Google Scholar 

  16. G. K. Gomma, Mater. Chem. Phys. 55, 235 (1998).

    Article  Google Scholar 

  17. R. F. V. Villamil, P. Corio, J. C. Rubim, and S. M. L. Agostinho, J. Electroanal. Chem. 535, 75 (2002).

    Article  Google Scholar 

  18. Y. Ling, Y. Guan, and K. N. Han, Corrosion 51, 367 (1995).

    Article  Google Scholar 

  19. V. S. Sastri, Green Corrosion Inhibitors: Theory and Practice, pp.139–166, John Wiley & Sons, Inc., New York (2011).

    Book  Google Scholar 

  20. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, A. Cherqaoui, and D. Takky, Appl. Surf. Sci. 252, 8178 (2006).

    Article  Google Scholar 

  21. I. B. Obot and N. O. Obi-Egbedi, Corros. Sci. 52, 657 (2010).

    Article  Google Scholar 

  22. G. K. Gomma and M. H. Wahdan, Mater. Chem. Phys. 39, 142 (1994).

    Article  Google Scholar 

  23. M. S. Abdel Aal, M. H. Wahdan, and G. K. Gomma, Mater. Chem. Phys. 39, 290 (1995).

    Article  Google Scholar 

  24. G. Schmitt, Brit. Corros. J. 19, 165 (1984).

    Article  Google Scholar 

  25. J. O. Bockris and A. K. N. Reddy, Modern Electorochemistry 2B: Electrode in Chemistry, Engineering, Biology and Environmental Science, 2nd ed., pp.37–39, KluwerAcademic / Plenum Publisher, New York (2000).

    Google Scholar 

  26. N. Kovacevic and A. Kokalj, Corros. Sci. 53, 909 (2011).

    Article  Google Scholar 

  27. A. S. Fouda and H. M. EI-Abbasy, Corrosion 68, 015002-1 (2012).

  28. N. Khalil, Electrochim. Acta 48, 2635 (2003).

    Article  Google Scholar 

  29. A. M. Al-Mayouf, A. K. Al-Ameery, and A. A. Al-Suhybani, Corrosion 57, 614 (2001).

    Article  Google Scholar 

  30. A. Bellaochou, B. Kabkab, A. Guenbour, and A. Ben Bachir, Prog. Org. Coat. 41, 121 (2001).

    Article  Google Scholar 

  31. M. A. Amin, K. F. Khaled, and S. A. Fadl-Allah, Electrochim. Acta 52, 3588 (2007).

    Article  Google Scholar 

  32. M. H. Abd-Elhamid, B. G. Ateya, H. W. Pickering, J. Electrochem. Soc. 144, L58 (1997).

    Article  Google Scholar 

  33. A. L. Gallina, B. V. Dias, and P. R. P. Rodrgues, The Use of Stainless Steel 254 to Produce Hydrogen, Materials and Processes for Energy: Communicating Current Research and Technological Development, pp.464–469, Formatex Research Center, Madrid (2013).

    Google Scholar 

  34. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., p.84, Prentice Hall, New Jersey (1996).

    Google Scholar 

  35. J. G. Kim and R. A. Buchanan, Corrosion 50, 658 (1994).

    Article  Google Scholar 

  36. J. E. Fagel and G. W. Ewing, J. Am. Chem. Soc. 73, 4360 (1951).

    Article  Google Scholar 

  37. D. Tromans and R.-H. Sun, J. Electrochem. Soc. 138, 3235 (1991).

    Article  Google Scholar 

  38. M. Scendo and J. Malyszko, J. Electrochem. Soc. 147, 1758 (2000).

    Article  Google Scholar 

  39. I. Ahamed, R. Prasad, and M. A. Quraush, Corros. Sci. 52, 933 (2010).

    Article  Google Scholar 

  40. X. Li, S. Deng, and H. Fu, Corros. Sci. 52, 2786 (2010).

    Article  Google Scholar 

  41. D. A. Harrington and P. van den Driessche, Electrochim. Acta 56, 8005 (2011).

    Article  Google Scholar 

  42. M. Mahdavian and S. Ashhari, Prog. Org. Coat. 68, 259 (2010).

    Article  Google Scholar 

  43. K. H. Kim, S. H. Lee, N. D. Nam, and J. G. Kim, Corros. Sci. 53, 3576 (2011).

    Article  Google Scholar 

  44. D. A. Lopez and S. N. Simison, Electrochim. Acta 48, 845 (2003).

    Article  Google Scholar 

  45. F. Bentiss and M. Lebrinim, Corros. Sci. 51, 2165 (2009).

    Article  Google Scholar 

  46. C.H. Hsu and F. Mansfeld, Corrosion 57, 747 (2001).

    Article  Google Scholar 

  47. X. Li, S. Deng, and H. Fu, Corros. Sci. 53, 664 (2011).

    Article  Google Scholar 

  48. D.Y. Lee, T. H. Nam, I. J. Park, and J. G. Kim, J. Ahn, Corrosion 69, 828 (2013).

    Article  Google Scholar 

  49. H. H. Hassan, E. Abdelghani, and M. A. Amin, Electrochim. Acta 52, 6359 (2007).

    Article  Google Scholar 

  50. H. H. Hassan, Electrochim. Acta 51, 5966 (2006).

    Article  Google Scholar 

  51. A. Amirudin and D. Thierry, Prog. Org. Coat. 26, 1 (1995).

    Article  Google Scholar 

  52. R. Youda, H. Nishihara, and K. Aramaki, Electrochim. Acta 35, 1011 (1990).

    Article  Google Scholar 

  53. H.Y. H. Chan and M. J. Weaver, Langmuir 15, 3348 (1999).

    Article  Google Scholar 

  54. J.-L. Yao, Y.-X. Yuan, and R.-A. Gu, J. Electroanal. Chem. 573, 255 (2006).

    Article  Google Scholar 

  55. M. M. Mennucci, E. P. Banczek, P. R. P. Rodrigus, and I. Costa, Cement Concrete Comp. 31, 418 (2009).

    Article  Google Scholar 

  56. S. T. Selvi, V. Raman, and N. Rajendran, J. Appl. Electrochem. 33, 1175 (2003).

    Article  Google Scholar 

  57. S. Mohan and K. Settu, Appl. Phys. 31, 850 (1993).

    Google Scholar 

  58. D. Tromans and R.-H. Sun, J. Electrochem. Soc. 138, 3235 (1991).

    Article  Google Scholar 

  59. O. M. Trofimove, E. I. Brodskaya, Y. I. Bolgova, N. F. Chernov, and M. G. Voronkov, Dokl. Chem. 388, 26 (2003).

    Article  Google Scholar 

  60. I. B. Obot and N. O. Obi-Egbedi, Corros. Sci. 52, 657 (2010).

    Article  Google Scholar 

  61. M. Sahin, G. Gece, F. Karci, and S. Bilgic, J. Appl. Electrochem. 38, 809 (2008).

    Article  Google Scholar 

  62. J. S. Reed, Principles of Ceramic Processing, 2nd ed., p.152 John Wiley, New York (1995).

    Google Scholar 

  63. H. Tamura and N. Katayama, Environ. Sci. Technol. 30, 1198 (1996).

    Article  Google Scholar 

  64. H. Tamura, J. Colloid Interface Sci. 279, 1 (2004).

    Article  Google Scholar 

  65. H. Tamura (eds. P. Somasundaran), Encyclopedia Surface and Colloid Science, 2nd ed., pp.3032–3051, Taylor & Francis Group, New York (2006).

  66. A. Yamamoto, Organotransition Metal Chemistry: Fundamental Concepts and Applications, 1st ed., pp.59–63, Wiley-Interscience, Hoboken, New Jersey (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Gu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YS., Kim, SH. & Kim, JG. Effect of 1, 2, 3-benzotriazole on the corrosion properties of 316L stainless steel in synthetic tap water. Met. Mater. Int. 21, 1013–1022 (2015). https://doi.org/10.1007/s12540-015-5299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5299-4

Keywords

Navigation