Skip to main content
Log in

One-pot synthesis of h-BN fullerenes usinsg a graphene oxide template

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Hexagonal-boron nitride (h-BN) fullerenes were synthesized from a graphene oxide (GO) template by simultaneously heating the GO and B2O3 in the presence of NH3 gas. Transmission electron microscopy (TEM) observations revealed that a considerable amount of product had a fullerene-like nanostructure. Typical BN fullerenes have a polyhedral shape, being hollow nanocages. Lattice-resolved TEM and X-ray diffraction consistently demonstrated the formation of h-BN fullerenes. The FTIR spectrum exhibited absorption bands at approximately 800 and 1378 cm-1, which were related to the h-BN structure. The Raman spectra exhibited peaks at 1368 and 1399 cm-1, which can be related to BN sheets and BN fullerenes, respectively. The photoluminescence spectrum of the h-BN fullerenes taken at 8 K exhibited intense white-light emission. To reveal the origin of the broad emission band, which could be a superimposition of several peaks, we used a deconvolution procedure based on Gaussian functions. We proposed a growth mechanism of the h-BN fullerenes and verified it with a thermodynamic calculation. This work provides a cost-effective approach to synthesize fullerene-type boron nitride on a production scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kroto, J. Heath, S. O’Brien, R. Curl, and R. Smalley, Nature 318, 162 (1985).

    Article  Google Scholar 

  2. S. Alexandre, H. Chacham, and R. Nunes, Phys. Rev. B 63, 045402 (2001).

    Article  Google Scholar 

  3. S. Alexandre, M. Mazzoni, and H. Chacham, Appl. Phys. Lett. 75, 61 (1999).

    Article  Google Scholar 

  4. D. Golberg, Y. Bando, O. Stephan, and K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998).

    Article  Google Scholar 

  5. N. Chopra, R. Luyken, K. Cherrey, V. Crespi, M. Cohen, S. Louie, and A. Zettl, Science 269, 966 (1995).

    Article  Google Scholar 

  6. T. Hirano, T. Oku, and K. Suganuma, J. Mater. Chem. 9, 855 (1999).

    Article  Google Scholar 

  7. I. Narita and T. Oku, Diamond Relat. Mater. 12, 1146 (2003).

    Article  Google Scholar 

  8. L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. Cohen, and R. Tenne, Nature 387, 791 (1997).

    Article  Google Scholar 

  9. J. Sloan, J. Cook, M. Green, J. Hutchison, and R. Tenne, J. Mater. Chem. 7, 1089 (1997).

    Article  Google Scholar 

  10. T. Oku and M. Kuno, Diamond Relat. Mater. 12, 840 (2003).

    Article  Google Scholar 

  11. L. Chkhartishvili, Nano Studies 2, 139 (2010).

    Google Scholar 

  12. Q. Sun, Q. Wang, and P. Jena, Nano Lett. 5, 1273 (2005).

    Article  Google Scholar 

  13. T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara, and K. Sudanuma, Mater. Sci. Eng. B 74, 206 (2000).

    Article  Google Scholar 

  14. O. Stephan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, and T. Sato, Appl. Phys. A 67, 107 (1998).

    Google Scholar 

  15. L. Shi, Y. Gu, L. Chen, Y. Qian, Z. Yang, and J. Ma, J. Sol. Stat. Chem. 177, 721 (2004).

    Article  Google Scholar 

  16. W. Han, Y. Bando, K. Kurashima, and T. Sato, Jpn. J. Appl. Phys. 38, L755 (1999).

    Article  Google Scholar 

  17. F. Xu, Y. Xie, X. Zhang, S. Zhang, X. Liu, and X. Tian, Inorg. Chem. 43, 822 (2004). 18. W. S. Hummers and R. E. Offerman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  18. X. Ma, N. Lee, H. Oh, S. Ju ng, W. Lee, and S. Kim, J. Cryst. Growth 316, 185 (2011).

    Article  Google Scholar 

  19. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. E. J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Nano Lett. 12, 161 (2012).

    Article  Google Scholar 

  20. I. Naumov, A. M. Bratkovsky, and V. Ranjan, Phys. Rev. Lett. 102, 217601 (2009).

    Article  Google Scholar 

  21. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, Nat. Photonics 3, 591 (2009).

    Article  Google Scholar 

  22. V. Pokropivny, V. Skorokhod, G. Oleinik, A. Kurdyumov, T. Bartnitskaya, A. Pokropivny, A. Sisonyuk, and D. Sheichenko, J. Sol. Stat. Chem. 154, 214 (2000).

    Article  Google Scholar 

  23. V. Linss, S. Rodil, P. Reinke, M. Garnier, P. Oelhafen, U. Kreissig, and F. Richter, Thin Solid Films 467, 76 (2004).

    Article  Google Scholar 

  24. A. Enyashin and A. Ivanovskii, Phys. Sol. Stat. 50, 390 (2008).

    Article  Google Scholar 

  25. T. Hirano, T. Oku, and K. Suganuma, Diam. Relat. Mater. 9, 625 (2000).

    Article  Google Scholar 

  26. Y. Yong, K. Liu, B. Song, P. He, P. Wang, and H. Li, Phys. Lett. A 376, 1465 (2012).

    Article  Google Scholar 

  27. R. Geick, C. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966).

    Article  Google Scholar 

  28. M. Mannan, M. Nagano, K. Shigezumi, T. Kida, N. Hirao, and Y. Baba, Am. J. Applied Sci. 5, 736 (2007).

    Google Scholar 

  29. R. Gago, I. Jimenez, F. Agullo-Rueda, J. Albella, Z. Czigany, and L. Hultman, J. Appl. Phys. 92, 5177 (2002).

    Article  Google Scholar 

  30. J. Wu, W. Han, W. Walukiewicz, J. Ager III, W. Shan, E. Haller, and A. Zettl, Nano Lett. 4, 647 (2004).

    Article  Google Scholar 

  31. L. Bao, C. Li, Y. Tian, J. Tian, C. Hui, X. Wang, C. Shen, and H. Gao, Chin. Phys. B 17, 4585 (2008).

    Article  Google Scholar 

  32. C. Tang, Y. Bando, C. Zhi, and D. Golberg, Chem. Commun. 44, 4599 (2007).

    Article  Google Scholar 

  33. B. Zhong, X. Huang, G. Wen, L. Xia, H. Yu, and H. Bai, J. Phys. Chem. C 114, 21165 (2010).

    Article  Google Scholar 

  34. X. Li, C. Shao, S. Qiu, F. Xiao, W. Zheng, and O. Terasaki, Mater. Lett. 44, 341 (2000).

    Article  Google Scholar 

  35. Z. Chen, J. Zou, G. Liu, F. Li, H. Cheng, T. Sekiguchi, M. Gu, X. Yao, L. Wang, and G. Lu, Appl. Phys. Lett. 94, 023105 (2009).

    Article  Google Scholar 

  36. X. Bai, E. Wang, J. Yu, and H. Yang, Appl. Phys. Lett. 77, 67 (2000).

    Article  Google Scholar 

  37. C. Zhi, Y. Bando, C. Tang, and D. Golberg, Appl. Phys. Lett. 87, 063107 (2005).

    Article  Google Scholar 

  38. H. Chen, Y. Chen, C. Li, H. Zhang, J. Williams, Y. Liu, Z. Liu, and S. Ringer, Adv. Mater. 19, 1845 (2007).

    Article  Google Scholar 

  39. C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A. D. Pelton, C. Robelin, and S. Peterson, CALPHAD 33, 295 (2009).

    Article  Google Scholar 

  40. T. W. Lin, C. Y. Su, X. Q. Zhang, W. Zhang, Y. H. Lee, C. W. Chu, H. Y. Lin, M. T. Chang, F. R. Chen, and L. J. Li, Small 8, 1384 (2012).

    Article  Google Scholar 

  41. W. Q. Han, R. Brutchey, T. D. Tilley, and A. Zettl, Nano Lett. 4, 173 (2004).

    Article  Google Scholar 

  42. S. J. Yoo and W. J. Kim, Korean J. Met. Mater. 52, 561 (2014).

    Article  Google Scholar 

  43. C.-H. Lim, H.-S. Kim, Y.-T. Yu, and J.-S. Park, Met. Mater. Int. 20, 323 (2014).

    Article  Google Scholar 

  44. H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, A. Mirsepasi, and C. Zamani, Met. Mater. Int. 20, 201 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wu or Hyoun Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.S., Khai, T.V., Kwon, Y.J. et al. One-pot synthesis of h-BN fullerenes usinsg a graphene oxide template. Met. Mater. Int. 21, 950–955 (2015). https://doi.org/10.1007/s12540-015-5043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5043-0

Keywords

Navigation