Skip to main content
Log in

Mechanical and asymmetrical thermal properties of Al/Cu composite fabricated by repeated hydrostatic extrusion process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, an Al/Cu composite was fabricated using repeated hydrostatic extrusions with a semi-die angle of 45° at a temperature of 200°C. During the repeated hydrostatic extrusion process, an intermetallic layer of 1 μm was generated at the Al/Cu interface. The intermetallic reinforcement layer formation was studied via field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The reinforcement layers consisted of Al2Cu and Al4Cu9 phases. The thermal conductivity and coefficient of thermal expansion of the Al/Cu composites were determined via laser flash analyzer and thermal mechanical analyzer. The thermal conductivities in the longitudinal direction and cross direction were 267.8 W/mK and 209.9 W/mK at room temperature, respectively. The coefficient of thermal expansion at temperatures between room temperature and 450°C was 18.3 μm/m°C. The ultimate tensile strength of the Al/Cu composite is 102.8 MPa. The anisotropic physical properties of the prepared composite were mainly a result of the unique directional microstructure formed during the repeated extrusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. M. Jo, K. S. Lee, N. H. Kang, and Y. S. Lee, Korean J. Met. Mater. 52, 881 (2014).

    Google Scholar 

  2. P. C. Tortorici and M. A. Dayananda, Mater. Sci. Eng. 244, 207 (1998).

    Article  Google Scholar 

  3. K. Osakada, M. Limb, and P. B. Mellor, Int. J. Mech. Sci. 15, 291 (1973).

    Article  Google Scholar 

  4. H. J. Park, K. H. Na, N. S. Cho, Y. S. Lee, and S. W. Kim, J. Mater. Process. Technol. 67, 24 (1997).

    Article  Google Scholar 

  5. Y. Lu, J. H. Gu, S. S. Kim, H. U. Hong, H. K. Choi, and J. H. Lee, Met. Mater. Int. 20, 221 (2014).

    Article  Google Scholar 

  6. D. G. Li, Q. Wang, T. Liu, G. J. Li, and J. C. He, Mater. Chem. Phys. 117, 504 (2009).

    Article  Google Scholar 

  7. E. Hug and N. Bellido, Mater. Sci. Eng. 528, 7103 (2011).

    Article  Google Scholar 

  8. P. Kova, W. Pachla, I. Husek, M. Kulczyk, T. Melisek, T. Holubek, R. Diduszko, and M. Reissner, Physica C. 468, 2356 (2008).

    Article  Google Scholar 

  9. E. C. Moreno-Valle, W. Pachla, M. Kulczyk, B. Savoini, M. A. Monge, C. Ballesteros, and I. Sabirov, Mater. Sci. Eng. 588, 7 (2013).

    Article  Google Scholar 

  10. H. G. Jeong, D. J. Yoon, E. Z. Kim, H. J. Park, and K. H. Na, J. Mater. Process. Technol. 130, 438 (2002).

    Article  Google Scholar 

  11. Y. H. Park and C. Y. Kang, Korean Weld. Join. Soc. 24, 355 (2006).

    Google Scholar 

  12. J. Pilling and N. Rediely, J. Mater. Sci. Eng. 407, 154 (2005).

    Article  Google Scholar 

  13. T. H. Lee, Y. J. Lee, K. T. Park, H. H. Nersisyan, H. G. Jeong, and J. H. Lee, J. Mater. Process. Technol. 213, 487 (2013).

    Article  Google Scholar 

  14. H. C. Youn, S. M. Bak, S. H. Park, S. B. Yoon, K. C. Roh, and K. B. Kim, Met. Mater. Int. 20, 975 (2014).

    Article  Google Scholar 

  15. R. A. Vandermeer, Acta Metallurgica, 15, 447 (1967).

    Article  Google Scholar 

  16. Y. F. Li, J. T. Guo, and Y. F. Shen, Trans. Nonferrous Met. Soc. China, 16, 368 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyeon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, TH., Lee, YJ., Park, KT. et al. Mechanical and asymmetrical thermal properties of Al/Cu composite fabricated by repeated hydrostatic extrusion process. Met. Mater. Int. 21, 402–407 (2015). https://doi.org/10.1007/s12540-015-4242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4242-z

Keywords

Navigation