Skip to main content
Log in

Mapping analysis of single crystal SiC polytypes grown from purified β-SiC powder

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The most important consideration when growing single crystal silicon carbide by the physical vapor transport method is to minimize defects. To minimize defects caused by temperature gradient, we used β phase SiC powder, which has a low sublimation temperature, and purified the β phase SiC powder to improve the purity of single crystal SiC. Furthermore, we performed thermodynamic computational simulations based on compositions of purified and non-purified β-SiC powders to study the impact of metallic impurities within SiC powder on the composition of single crystal SiC. We grew SiC at temperatures about 200 °C lower than the previous growth temperature using purified β-SiC powder and mapped the phase change behavior of SiC according to different growth temperatures. Moreover, we compared and analyzed the characteristics of SiC polytype formation and crystallinity according to growth temperature. We compared the distribution of defects and dislocations of single crystal 4H SiC grown from purified and non-purified β-SiC powder to study the impact of source purification on defect generation. We also investigated the effect of metallic impurities on the formation of defects and dislocations through content analysis of metallic impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, Nature 430, 1009 (2004).

    Article  Google Scholar 

  2. Y. Ching, Y.N. Xu, P. Rulis, and L. Ouyang, Mater. Sci. Eng. A 422, 147 (2006).

    Article  Google Scholar 

  3. C. H. Pai, Korean. J. Met. Mater. 50, 839 (2012).

    Google Scholar 

  4. J. H. Eom and Y. W. Kim, Met. Mater. Int. 18, 379 (2012).

    Article  Google Scholar 

  5. J. H. Zhao, Mater. Res. Soc. Bull. 30, 293 (2005).

    Article  Google Scholar 

  6. J. C. Zolper and M. Skowronski, Mater. Res. Soc. Bull. 30, 273 (2005).

    Article  Google Scholar 

  7. Y. M. Tairov and V. F. Tsvetkov, Prog. Cryst. Growth Charact. Mater. 7, 111 (1983).

    Article  Google Scholar 

  8. L. K. Frevel, D. R. Peterson, and C. K. Saha, J. Mater. Sci. 27, 1913 (1992).

    Article  Google Scholar 

  9. M. Anikin and R. Madar, Mater. Sci. Eng. B 46, 278 (1997).

    Article  Google Scholar 

  10. D. Hofmann, E. Schmitt, M. Bickermann, M. Kolbl, P. J. Wellmann, and A. Winnacker, Mater. Sci. Eng. B 61, 48 (1999).

    Article  Google Scholar 

  11. N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, J. Cryst. Growth 237, 1180 (2002).

    Article  Google Scholar 

  12. F. Bernardini and L. Colombo, Phys. Rev. B 72, 0852151 (2005).

    Article  Google Scholar 

  13. R. A. Stein and P. Lanig, J. Cryst. Growth 131, 71 (1993).

    Article  Google Scholar 

  14. T. Takahashi, T. Tomita, T. Okada, S. Matsuo, S. Hashimoto, M. Yamaguchi, K. Nakagawa, N. Uehara, and M. Kamano, Appl. Phys. Express 3, 016603 (2010).

    Article  Google Scholar 

  15. M. Bechelany, A. Brioude, D. Cornu, G. Ferro, and P. Miele, Adv. Funct. Mater. 17, 939 (2007).

    Article  Google Scholar 

  16. X. Li, E. Shi, Z. Chen, and B. Xiao, Diam. Relat. Mater. 16, 654 (2007).

    Article  Google Scholar 

  17. T. L. Straubinger, M. Bickermann, D. Hofmann, R. Weingartner, P. J. Wellmann, and A.Winnacker, Mater. Sci. Forum 333, 25 (2001).

    Article  Google Scholar 

  18. F. Mercier and S. Nishizawa, J. Cryst. Growth 360, 189 (2012).

    Article  Google Scholar 

  19. K. Bottcher and K. Cliffe, J. Cryst. Growth 284, 425 (2005).

    Article  Google Scholar 

  20. S. Lin, Z. Chen, X. Feng, Y. Yang, L. Li, Z. Wang, P. Pan, J. Wan, H. Wang, Y. Ba, Y. Ma, and Q. Li, Diam. Relat. Mater. 20, 516 (2011).

    Article  Google Scholar 

  21. Y. Yang and Z. Chen, Mater. Sci. Semicond. Process. 12, 113 (2009).

    Article  Google Scholar 

  22. R. Yakimova, M. Syvajarvi, T. Iakimov, H. Jacobsson, R. Raback, A. Vehanen, and E. Janzen, J. Cryst. Growth 217, 255 (2000).

    Article  Google Scholar 

  23. D. Schulz, G. Wagner, J. Dolle, K. Irmscher, T. Muller, H. J. Rost, D. Siche, and J. Wollweber, J. Cryst. Growth 198, 1024 (1999).

    Article  Google Scholar 

  24. T. Ito, T. Akiyama, K. Nakamura, and T. Ito, Appl. Surf. Sci. 256, 1160 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.G., Park, S.J., Jung, E. et al. Mapping analysis of single crystal SiC polytypes grown from purified β-SiC powder. Met. Mater. Int. 20, 687–693 (2014). https://doi.org/10.1007/s12540-014-5013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5013-y

Keywords

Navigation