Skip to main content
Log in

Characterization of Ni-W solid solution alloy powders and sintered compacts synthesized via mechanically activated hydrogen reduction of NiO-WO3 mixtures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Blended nickel oxide — tungsten oxide powders corresponding to the compositions of 70 wt% nickel — 30 wt% tungsten were mechanically alloyed (MA’d) for different durations such as 0 h, 6 h, 12 h and 24 h and reduced/alloyed at 550 °C for 1 h followed by 600 °C for 0.5 h under hydrogen (H2) atmosphere. H2 reduction of the MA’d fine oxide powders resulted in the fabrication of nanocrystalline Ni(W) solid solution alloy powders, whereas a mixture of Ni and WO2 powders were obtained via hydrogen reduction of asblended oxide mixtures, which revealed the activation of the reduction process by MA. Obtained powders were sintered at 1300 °C for 1 h under H2 and Ar gas flowing conditions. X-ray diffraction patterns taken from the sintered samples revealed the presence of the Ni(W) solid solution phase for all samples, whereas the presence of elemental W phase was observed in the sintered as-blended and reduced powders. The lowest relative density value of 92.04% and microhardness value of 1.27 GPa were measured for the sintered as-blended and reduced powders, which increased to between 97.62% and 98.72% and 2.19 GPa and 2.23 GPa, respectively, with the applied MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Eliaz, T. M. Sridhar, and E. Gileadi, Electrochim. Acta 50, 2893 (2005).

    Article  CAS  Google Scholar 

  2. K. R. Sriraman, S. G. S. Raman, and S. K. Seshadri, Mater. Sci. Eng. A 418, 303 (2006).

    Article  Google Scholar 

  3. C. Borgia, T. Scharowsky, A. Furrer, C. Solenthaler, and R. Spolenak, Acta Mater. 59, 386 (2011).

    Article  CAS  Google Scholar 

  4. H. Alimadadi, M. Ahmadi, M. Aliofkhazraei, and S. R. Younesi, Mater. Des. 30, 1356 (2009).

    Article  CAS  Google Scholar 

  5. A. O. Aning, Z. Wang, and T. H. Courtney, Acta Metall. Mater. 41, 165 (1993).

    Article  CAS  Google Scholar 

  6. S. Mi and T. H. Courtney, Scr. Mater. 38, 637 (1998).

    Article  CAS  Google Scholar 

  7. A. N. Streletskii and T. H. Courtney, Mater. Sci. Eng. A 282, 213 (2000).

    Article  Google Scholar 

  8. T. Nasu, M. Sakurai, T. Kamiyama, T. Usuki, O. Uemura, K. Tokimitsu, and T. Yamasaki, Mater. Sci. Eng. A 375-377, 163 (2004).

    Article  Google Scholar 

  9. A. Genç, M. L. Öveço lu, M. Baydo an, and S. Turan, Mater. Des. 42, 495 (2012).

    Article  Google Scholar 

  10. S. Sridhar, D. Sichen, and S. Seetharaman, Metall. Mater. Trans. B 25, 391 (1994).

    Article  Google Scholar 

  11. J. A. Bustnes, Metall. Mater. Trans. B 28, 613 (1997).

    Article  Google Scholar 

  12. S. Mentus, D. M. Majstorovic, B. S. Tomic, and R. Z. Dimitrijevic, Mater. Sci. Forum 494, 345 (2005).

    Article  CAS  Google Scholar 

  13. U. Tilliander, R. E. Aune, and S. E. Seetharaman, Metall. Mater. Trans. B 37, 265 (2006).

    Article  Google Scholar 

  14. S. Mentus, B. Tomic-Tucakovic, D. Majstorovic, and R. Dimitrijevic, Mater. Chem. Phys. 112, 254 (2008).

    Article  CAS  Google Scholar 

  15. M. Bahgat, M. K. Paek, and J. J. Pak, J. Alloys Compd. 472, 314 (2009).

    Article  CAS  Google Scholar 

  16. H. M. Ahmed, A. H. A. El-Geassy, and S. Seetharaman, Metall. Mater. Trans. B 41, 161 (2010).

    Article  Google Scholar 

  17. X. Y. Qin, X. G. Zhu, S. Gao, L. F. Chi, and J. S. Lee, J. Phys. Condens. Mater. 14, 2605 (2002).

    Article  CAS  Google Scholar 

  18. TOPAS 4.2 (BRUKER AXS), http://www.brukeraxs.com (released in 2011).

  19. Y. Zhong, D. Ping, X. Song, and F. Yin, J. Alloys Compd. 476, 113 (2009).

    Article  CAS  Google Scholar 

  20. T. Ungár, J. Mater. Sci. 42, 1584 (2007).

    Article  Google Scholar 

  21. R. Vintila, A. Charest, R. A. L. Drew, and M. Brochu, Mater. Sci. Eng. A 528, 4395 (2011).

    Article  Google Scholar 

  22. R. Juskenas, I. Valsiunas, V. Pakstas, and R. Giraitis, Electrochim. Acta 54, 2616 (2009).

    Article  CAS  Google Scholar 

  23. K. Maweja, M. J. Phasha, and L. J. Choenyane, Int. J. Refract. Met. 30, 78 (2012).

    Article  CAS  Google Scholar 

  24. R. Schulz, M. L. Trudeau, and A. van Neste, Mater. Sci. Eng. A 134, 1354 (1991).

    Article  Google Scholar 

  25. M. S. El-Eskandarany, A. A. Bahgat, N. S. Gomaa, and N. A. Eissa, J. Alloys Compd. 290, 181 (1999).

    Article  CAS  Google Scholar 

  26. M. S. El-Eskandarany, J. Saida, and A. Inoue, Acta Mater. 50, 2725 (2002).

    Article  CAS  Google Scholar 

  27. P. P. Bhattacharjee, S. K. Sinha, and A. Upadhyaya, Scr. Mater. 56, 13 (2007).

    Article  CAS  Google Scholar 

  28. V. Randle, P. R. Rios, and Y. Hu, Scr. Mater. 58, 130 (2008).

    Article  CAS  Google Scholar 

  29. H. Gleiter, Acta Mater. 17, 1421 (1969).

    Article  CAS  Google Scholar 

  30. J. A. Venables, Philos. Mag. A 6 379 (1961).

    Article  CAS  Google Scholar 

  31. A. J. Detor, M. K. Miller, and C. A. Schuh, Philos. Mag. Lett. 87, 581 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Genç.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genç, A., Lütfi Öveçoǧlu, M. & Turan, S. Characterization of Ni-W solid solution alloy powders and sintered compacts synthesized via mechanically activated hydrogen reduction of NiO-WO3 mixtures. Met. Mater. Int. 19, 813–819 (2013). https://doi.org/10.1007/s12540-013-4022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4022-6

Key words

Navigation