Skip to main content
Log in

Comparison of hydrogen-storage properties of Mg-14Ni-3Fe2O3-3Ti and Mg-14Ni-2Fe2O3-2Ti-2Fe

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Magnesium with oxides or transition elements prepared by mechanical grinding under H2 (reactive mechanical grinding) showed relatively high hydriding and dehydriding rates when the content of additives was about 20 wt%. Ni, Fe2O3, and Fe were chosen as the oxides or transition elements to be added. Ti was also selected since it was considered to increase the hydriding and dehydriding rates by forming Ti hydride. Samples Mg-14Ni-3Fe2O3-3Ti (Sample A) and Mg-14Ni-2Fe2O3-2Ti-2Fe (Sample B) were prepared by reactive mechanical grinding, and their hydrogen storage properties were compared. The activated Sample A had a little smaller hydriding rate than the activated Sample B, but a higher dehydriding rate than the activated Sample B. Sample A exhibits quite a larger dehydriding rate and quantity of hydrogen desorbed for 60 min than any other Mg-xNi-yFe2O3-zM (M=transition metals) samples. An addition of a relatively larger amount of Ti is considered to lead to quite a high hydriding rate and a high dehydriding rate of Sample A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vose, Metal Hydrides, U.S. Patent 2,944, 587 (1961).

    Google Scholar 

  2. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).

    Article  CAS  Google Scholar 

  3. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968).

    Article  CAS  Google Scholar 

  4. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).

    Article  CAS  Google Scholar 

  5. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).

    Article  CAS  Google Scholar 

  6. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983).

    Article  CAS  Google Scholar 

  7. M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea, and V. Tsakiris, J. Alloys Compd. 488, 163 (2009).

    Article  CAS  Google Scholar 

  8. Z. Li, X. Liu, Z. Huang, L. Jiang, and S. Wang, Rare Metals 25, 247 (2006).

    Article  CAS  Google Scholar 

  9. Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007).

    Article  CAS  Google Scholar 

  10. H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloys Compd. 509, 4268 (2011).

    Article  CAS  Google Scholar 

  11. P. Pei, X. Song, J. Liu, A. Song, P. Zhang, and G. Chen, Int. J. Hydrogen Energy 37, 984 (2012).

    Article  CAS  Google Scholar 

  12. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011).

    Article  CAS  Google Scholar 

  13. Y. H. Cho, S. Aminorroaya, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011).

    Article  CAS  Google Scholar 

  14. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, and A. Marini, Intermetallics 18, 203 (2010).

    Article  CAS  Google Scholar 

  15. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).

    Article  CAS  Google Scholar 

  16. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980).

    Article  CAS  Google Scholar 

  17. M. Y. Song, J. Mater. Sci. 30, 1343 (1995).

    Article  CAS  Google Scholar 

  18. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985).

    Article  CAS  Google Scholar 

  19. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).

    Article  CAS  Google Scholar 

  20. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).

    Article  CAS  Google Scholar 

  21. J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).

    Article  CAS  Google Scholar 

  22. M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, S. H. Hong, D. R. Mumm, and J. S. Bae, J. Alloys Compd. 415, 266 (2006).

    Article  CAS  Google Scholar 

  23. S. N. Kwon, S. H. Baek, D. R. Mumm, S. H. Hong, and M. Y. Song, Int. J. Hydrogen Energy 33, 4586 (2008).

    Article  CAS  Google Scholar 

  24. M. Y. Song, S. N. Kwon, S. H. Hong, and H. R. Park, Met. Mater. Int. 18, 279 (2012).

    Article  CAS  Google Scholar 

  25. M.Y. Song, S. H. Baek, J.-L. Bobet, J. Song, and S.H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010).

    Article  CAS  Google Scholar 

  26. S. N. Kwon, Improvement of Hydriding and Dehydriding Rates of Mg-Based Hydrogen Storage Alloys Due to Catalytic Effects of Fe 2 O 3 and Ni, Chonbuk National University, M. E. Thesis (2007).

    Google Scholar 

  27. M. Y. Song, M. Pezat, B. Darriet, and P. Hagenmuller, J. Mater. Sci. 20, 2958 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, Y.J., Park, H.R. & Song, M.Y. Comparison of hydrogen-storage properties of Mg-14Ni-3Fe2O3-3Ti and Mg-14Ni-2Fe2O3-2Ti-2Fe. Met. Mater. Int. 19, 543–548 (2013). https://doi.org/10.1007/s12540-013-2028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-2028-8

Key words

Navigation