Skip to main content
Log in

Microstructure, mechanical, and anticorrosive properties of a new Ti-20Nb-10Zr-5Ta alloy based on nontoxic and nonallergenic elements

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

For an alloy to be suitable for use as an implant material, it must have a low specific weight and Young’s modulus, good mechanical properties that are similar to those of bone, and very good corrosion resistance and biocompatibility. In this study, we have developed a novel Ti-20Nb-10Zr-5Ta alloy that is composed of nontoxic, nonallergenic, corrosion-resistant elements. This alloy has low specific weight and Young’s modulus and good mechanical properties. It has a fine microstructure with a matrix that is mainly composed of the β phase and some α phase due to recrystallization during cooling. It shows elastoplastic behavior with a fairly linear elastic behavior and low Young’s modulus (59 GPa). In addition, its ultimate tensile strength, 0.2% yield strength, and hardness are higher than those of CP Ti, commercial Ti-6Al-4V, and similar β-type alloys. It exhibited a very stable passive state and its electrochemical parameters and corrosion and ion release rates were better than those of CP Ti in Ringer’s solutions of different pH values that simulate the severe functional conditions of an implant; this is attributable to the beneficial influence of the alloying elements and to the better protective properties of the coated passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Assis, S. Wolynec, and I. Costa, Electrochim. Acta 51, 1815 (2006).

    Article  Google Scholar 

  2. C. S. Han, C. H. Bae, and J. H. Lee, Met. Mater. Int. 15, 3413 (2009).

    Google Scholar 

  3. M. Takahashi, M. Kikuku, and Y. Takada, Met. Mater. Int. 17, 175 (2011).

    Article  CAS  Google Scholar 

  4. P. Laheurte, F. Prima, A. Eberhardt, T. Gloriant, M. Wary, and E. Patoor, J. Mech. Behav. Biomed. Mater. 3, 565 (2010).

    Article  CAS  Google Scholar 

  5. J.-M. Jang, S.-J. Park, G.-S. Chui, T.-Y. Kwom, and K.-H. Kim, Met. Mater. Int. 14, 457 (2008).

    Article  CAS  Google Scholar 

  6. M. P. Neupane, Y. K. Kim, H. S. Park, S. J. Lee, M. H. Lee, and T. S. Bae, Met. Mater. Int. 14, 607 (2008).

    Article  CAS  Google Scholar 

  7. M. Niinomi, J. Mech. Behav. Biomed. Mater. 1, 30 (2008).

    Article  Google Scholar 

  8. S.-J. Park, Met. Mater. Int. 14, 449 (2008).

    Article  CAS  Google Scholar 

  9. Y. Tanaka, M. Nakai, T. Akahori, M. Niinomi, Y. Tsutsumi, H. Doi, and T. Hanawa, Corros. Sci. 50, 2111 (2008).

    Article  CAS  Google Scholar 

  10. E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme, Biomaterials 25, 5705 (2004).

    Article  CAS  Google Scholar 

  11. P. Thomsen, C. Larsson, L. E. Ericson, L. Sennerby, J. Lausama, and B. Kasemo, J. Mater. Sci. Mater. M. 8, 653 (1997).

    Article  CAS  Google Scholar 

  12. E. Bertrand, T. Gloriant, D. M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, and S. I. Drob, J. Mech. Behav. Biomed. Mater. 3, 559 (2010).

    Article  CAS  Google Scholar 

  13. E. Vasilescu, P. Drob, D. Raducanu, V. D. Cojocaru, I. Cinca, D. Iordachescu, R. Ion, M. Popa, and C. Vasilescu, J. Mater. Sci. Mater. M. 21, 1959 (2010).

    Article  CAS  Google Scholar 

  14. M. V. Popa, E. Vasilescu, P. Drob, C. Vasilescu, S. I. Drob, D. Mareci, and J. C. Mirza Rosca, Quim. Nova 33, 1892 (2010).

    Article  CAS  Google Scholar 

  15. M. V. Popa, I. Demetrescu, E. Vasilescu, P. Drob, A. Santana Lopez, J. Mirza-Rosca, C. Vasilescu, and D. Ionita, Electrochim. Acta 49, 2113 (2004).

    Article  CAS  Google Scholar 

  16. E. Vasilescu, P. Drob, C. Vasilescu, S. I. Drob, E. Bertrand, D. M. Gordin, and T. Gloriant, Mater. Corros. 61, 947 (2010).

    Article  CAS  Google Scholar 

  17. B. O’Brien, J. Stinson, and W. Carroll, J. Mech. Behav. Biomed. Mater. 1, 303 (2008).

    Article  Google Scholar 

  18. S. Y. Yu and J. R. Scully, Corrosion 53, 965 (1997).

    Article  CAS  Google Scholar 

  19. Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi, Biomaterials 19, 1197 (1998).

    Article  CAS  Google Scholar 

  20. Y. Okazaki, Curr. Opin. Solid St. M. 5, 45 (2001).

    Article  CAS  Google Scholar 

  21. F. T. Cheng, K. H. Lo, and H. C. Man, J. Alloys Compd. 437, 322 (2007).

    Article  CAS  Google Scholar 

  22. M. Arciniegas, J. Casals, J. M. Manero, J. Pena, and F. J. Gil, J. Alloys Compd. 460, 213 (2008).

    Article  CAS  Google Scholar 

  23. H. Pan, R. Li, Y. Liu, M. Gao, H. Miao, Y. Lei, and Q. Wang, J. Alloys Compd. 463, 189 (2008).

    Article  CAS  Google Scholar 

  24. M. A. Baker, S. L. Assis, R. Grilli, and I. Costa, Surf. Interface Anal. 40, 220 (2008).

    Article  CAS  Google Scholar 

  25. M. Geetha, Y. U. Kamaki Mudali, A. K. Gogia, R. Asokamani, and R. Baldev, Corros. Sci. 46, 877 (2004).

    Article  CAS  Google Scholar 

  26. M. Karthega, V. Raman, and N. Rajendran, Acta Biomater. 3, 1019 (2007).

    Article  CAS  Google Scholar 

  27. M. F. Lopez, L. Soriano, F. J. Palomares, M. Sanchez- Agudo, G. G. Fuentes, A. Gutierrez, and J. A. Jimenez, Surf. Interface Anal. 33, 570 (2002).

    Article  CAS  Google Scholar 

  28. D. Q. Martins, W. R. Osorio, M. E. P. Souza, R. Caram, and A. Garcia, Electrochim. Acta 53, 2809 (2008).

    Article  CAS  Google Scholar 

  29. C. Morand, M. F. Lopez, A. Gutierrez, and J. A. Jimenez, Appl. Surf. Sci. 220, 79 (2003).

    Article  Google Scholar 

  30. A. Robin, O. A. S. Carvalho, S. G. Schneider, and S. Schneider, Mater. Corros. 59, 929 (2008).

    Article  CAS  Google Scholar 

  31. B. L. Wang, Y. F. Zheng, and L. C. Zhao, Mater. Corros. 60, 788, (2009).

    Article  CAS  Google Scholar 

  32. D. M. Gordin, T. Gloriant, G. Texier, I. Thibon, and D. Ansel, J. Mater. Sci.: Mater. Med. 15, 885 (2004).

    Article  CAS  Google Scholar 

  33. R. Banerjee, S. Nag, J. Stechschulte, and H. L. Fraser, Biomaterials 25, 3413 (2004).

    Article  CAS  Google Scholar 

  34. D. Mareci, R. Chelariu, D. Sutiman, D. M. Gordin, and T. Gloriant, Mater. Corros. 62, 1117 (2011).

    Article  CAS  Google Scholar 

  35. Y. Okazaki, Y. Ito, K. Kyo, and T. Tateishi, Mater. Sci. Eng. A, 213, 138 (1996).

    Article  Google Scholar 

  36. S. L. Assis and I. Costa, Mater. Corros. 58, 329 (2007).

    Article  CAS  Google Scholar 

  37. I. Cvijovic-Alagic, Z. Cvijovic, S. Mitrovic, V. Panic, and M. Rakin, Corros. Sci. 53, 796 (2011).

    Article  CAS  Google Scholar 

  38. D. J. Blackwood, A. W. C. Chua, K. H. W. Seah, R. Thampuran, and S. H. Teoh, Corros. Sci. 42, 481 (2000).

    Article  CAS  Google Scholar 

  39. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, NACE, Houston (1974).

    Google Scholar 

  40. E. Blasco-Tamarit, A. Igual-Munoz, J. Garcia Anton, and D. M. Garcia-Garcia, Corros. Sci. 51, 1095 (2009).

    Article  CAS  Google Scholar 

  41. G. Sheela, M. Ramasamy, C. R. K. Rao, and M. Pushpavanam, Bull. Electrochem. 17, 347 (2001).

    CAS  Google Scholar 

  42. E. Vasilescu, P. Drob, D. Raducanu, I. Cinca, D. Mareci, J. M. Calderon Moreno, M. Popa, C. Vasilescu, and J. C. Mirza Rosca, Corros. Sci. 51, 2885 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cora Vasilescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, M., Vasilescu, E., Drob, P. et al. Microstructure, mechanical, and anticorrosive properties of a new Ti-20Nb-10Zr-5Ta alloy based on nontoxic and nonallergenic elements. Met. Mater. Int. 18, 639–645 (2012). https://doi.org/10.1007/s12540-012-4026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-4026-7

Key words

Navigation