Skip to main content
Log in

Mechanism for the degradation of MmNi3.9Co0.6Mn0.3Al0.2 electrode and effects of additives on electrode degradation for Ni-MH secondary batteries

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Electrode degradation can affect the lifetime and safety of Ni-MH secondary batteries. This study examined the factors responsible for the degradation of metal hydride (MH) electrodes. The charge-discharge characteristics and cycle life of an MmNi3.9Co0.6Mn0.3Al0.2 (Mm: misch metal) type MH electrode were examined in a cell with a KOH electrolyte. After the charge-discharge cycles, the surface morphology of the electrodes was analyzed to monitor the extent of degradation. Electrochemical impedance spectroscopy provided information on the conductivity of the electrode. X-ray photon spectroscopy (XPS) was used to quantify the degradation of the electrode in terms of its composition. The MH electrodes degraded with cycling. This phenomenon was more prominent at higher C-rates and temperatures. The electrode degradation was attributed to the loss of active material from the current collector by the repeated absorption and desorption of hydrogen and the formation of an Al2O3 oxide layer on the electrode surface with cycling. In addition, the effects of the addition of Co nano and Y2O3 powder on the degradation of the MmNi3.9Co0.6Mn0.3Al0.2 electrode were examined. The addition of the Y2O3 and Co nano powder significantly improved the performance of the MH electrode by increasing the cycle life and initial activation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Kim and Y. U. Jeong, Kor. J. Met. Mater. 48, 262 (2010).

    Article  CAS  Google Scholar 

  2. D. Y. Kim, H. J. Ahn, J. S. Kim, I. P. Kim, J. H. Kweon, T. H. Nam, K. W. Kim, J. H. Ahn, and S. H. Hong, Electron. Mater. Lett. 5, 183 (2009).

    Article  CAS  Google Scholar 

  3. J. J. G. Willems and K. H. J. Buschow, J. Less. Common. Met. 129, 13 (1987).

    Article  CAS  Google Scholar 

  4. J. C. Viera, M. Gonzalez, B. Y. Liaw, F. J. Ferrero, J. C. Alvarez, J. C. Campo, and C. Blanco, J. Power Sources 171, 1040 (2007).

    Article  CAS  Google Scholar 

  5. F. Zhan, L. J. Jiang, B. R. Wu, Z. H. Xia, X. Y. Wei, and G. R. Qin, J. Alloys Compd. 293–295, 804 (1999).

    Article  Google Scholar 

  6. H. H. Law, B. Vyas, S. M. Zahurak, and W. Kammiolt, J. Electrochem. Soc. 143, 2596 (1996).

    Article  CAS  Google Scholar 

  7. M. Raju, M. V. Anantha, and L. Vijayaraghavan, J. Alloys Compd. 475, 664 (2009).

    Article  CAS  Google Scholar 

  8. H. J. Lee, D. C. Yang, C. J. Park, C. N. Park, and H. J. Jang, Int. J. Hydrogen Energ. 34, 481 (2009).

    Article  CAS  Google Scholar 

  9. L. Xiao, Y. Wang, Y. Liu, D. Song, L. Jiao, and H. Yuan, Int. J. Hydrogen Energ. 33, 3925 (2008).

    Article  CAS  Google Scholar 

  10. P. Zhang, X. Wang, J. Tu, and G. Chen, J. Rare Earth. 27, 510 (2009).

    Article  Google Scholar 

  11. X. Zhao, Y. Zhang, B. Li, H. Ren, X. Dong, and X. Wang, J. Alloys Compd. 454, 437 (2008).

    Article  CAS  Google Scholar 

  12. C. Y. Seo, S. J. Choi, J. Choi, C. N. Park, P. S. Lee, and J. Y. Lee, Int. J. Hydrogen Energ. 28, 317 (2003).

    Article  CAS  Google Scholar 

  13. H. Zhang, Y. Chen, Q. Zhu, G. Zhang, and Y. Chen, Int. J Hydrogen Energ. 33, 6704 (2008).

    Article  CAS  Google Scholar 

  14. L. Mao, J. Tong, Z. Shan, S. Yin, and F. Wu, J. Alloys Compd. 293–295, 829 (1999).

    Article  Google Scholar 

  15. F. Maurel, P. Leblanc, B. Knosp, and M. Backhaus-Ricoult, J. Alloys Compd. 309, 88 (2000).

    Article  CAS  Google Scholar 

  16. D. C. Yang, I. S. Jang, M. H. Jang, C. N. Park, C. J. Park, and J. Choi, Met. Mater. Int. 15, 421 (2009).

    Article  CAS  Google Scholar 

  17. K. Omura, K. Yuasa, T. Ebihara, and H. Kaiya, 198th meeting of Electrochemical Society Extended Abstracts, 100, p. 170 (1995).

    Google Scholar 

  18. D. D. Mcdonald and M. C. H. McKubre, in: E. Barsoukov and J. R. Macdonald (Ed.), Impedance Spectroscopy, Theory, Experiment, and Applications, p. 343, John Willy & Sons, New York (2005).

    Google Scholar 

  19. M. Tliha, H. Mathlouthi, C. Khaldi, J. Lamloumia, and A. Percheronguegan, J. Power Sources 160, 1391 (2006).

    Article  CAS  Google Scholar 

  20. H. Kaiya and T. Ookawa, J. Alloys Compd. 231, 598 (1995).

    Article  CAS  Google Scholar 

  21. F. Dupau, Ph.D. thesis, University of Paris XI (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, IS., Kalubarme, R.S., Yang, DC. et al. Mechanism for the degradation of MmNi3.9Co0.6Mn0.3Al0.2 electrode and effects of additives on electrode degradation for Ni-MH secondary batteries. Met. Mater. Int. 17, 891–897 (2011). https://doi.org/10.1007/s12540-011-6005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-6005-9

Keywords

Navigation