Skip to main content
Log in

Application of direct laser melting to restore damaged steel dies

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Direct laser melting (DLM) technology can be applied to restore damaged steel dies. To understand the effects of DLM process parameters such as the laser power and scan rate, a series of experiments was conducted to determine the optimal operating parameters. To investigate the laser melting characteristics, the depth/height ratio, depth/width ratio and micro-hardness as a function of the laser energy density were analyzed. Fe-Cr and Fe-Ni layers were deposited on a steel die with 11.38 J/mm2 of energy input. The wear-resistance and the friction coefficient of the deposited layer were investigated by a pin-on-disk test. The penetration depth decreased as the scan rate increased as a consequence of the shorter interaction time. The depth/height ratio of the deposited layer decreased with an increase in the scan rate. The depth/width ratio increased as laser power increased and the scan rate decreased. The deposition shape of the Fe-Ni powder was relatively shallow and wide compared with that of the Fe-Cr powder. The scan rate had a substantial effect upon the deposition height, with the Fe-Cr powder melting more than the Fe-Ni powder. The micro-hardness of the layer melted from the powders is higher than that of the substrate, and the hardness of the laser-surface-melted layer without any metal powder is higher compared to that of the metal-powder-melted layer. The direct laser melting process with Fe-Ni powder represents a superior method when restoring a steel die when the bead shape and hardness of the restored surface are important outcome considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Pinkerton and L. Li, Int. J. Adv. Manuf. Technol. 25, 471 (2005).

    Article  Google Scholar 

  2. X. C. Wang, T. Laoui, J. Bonse, J. P. Kruth, B. Lauwers, and L. Froyen, Int. J. Adv. Manuf. Technol. 19, 351 (2002).

    Article  Google Scholar 

  3. H. Y. Lee, T. J. Kim, and Y. J. Cho, J. Kor. Inst. Met. & Mater. 47, 267 (2009).

    CAS  Google Scholar 

  4. D. Cormier, O. Harrysson, and H. West, Rapid Prototyping J. 10, 35 (2004).

    Article  Google Scholar 

  5. S. H. Zhang, M. X. Li, T. Y. Cho, J. H. Yoon, W. Fang, Y. K. Joo, J. H. Kang, and C. G. Lee, Met. Mater. Int. 14, 315 (2008).

    Article  CAS  Google Scholar 

  6. R. Komanduri and Z. B. Hou, Inter. J. Heat Mass Transfer 44, 2845 (2001).

    Article  CAS  Google Scholar 

  7. K. A. Chiang and Y. C. Chen, Mater. Lett. 59, 1919 (2005).

    Article  CAS  Google Scholar 

  8. J. Grum and J. M. Slabe, Appl. Surf. Sci. 208–209, 424 (2003).

    Article  Google Scholar 

  9. A. J. Pinkerton, W. Wang, and L. Li, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222, 827 (2008).

    Article  Google Scholar 

  10. X. B. Liu, M. Pang, Z. G. Zhang, W. J. Ning, C. Y. Zheng, and G. Yu, Opt. Lasers Eng. 45, 929 (2007).

    Article  Google Scholar 

  11. M. Rajabi, M. Vahidi, A. Simchi, and P. Davami, Mater. Charact. 60, 1370 (2009).

    Article  CAS  Google Scholar 

  12. M. H. Jones and D. Scott, Industrial Tribology: The Practical Aspects of Friction, Lubrication and Wear, Elsevier Scientific Publishing Company, New York (1983).

    Google Scholar 

  13. J. A. Williams, Tribol. Int. 38, 863 (2005).

    Article  CAS  Google Scholar 

  14. J. H. Jang, B. D. Joo, J. H. Lee, and Y. H. Moon, Met. Mater. Int. 15, 903 (2009).

    Article  CAS  Google Scholar 

  15. W. M. Steen and C. H. G. Courtney, Metals Technol. 6, 456 (1979).

    CAS  Google Scholar 

  16. R. Sagaro, J. S. Ceballos, A. Blanco, and J. Mascarell, Wear 225–229, 575 (1999).

    Article  Google Scholar 

  17. K. A. Mumtaz, P. Erasenthiran, and N. Hopkinson, J. Mater. Process. Technol. 195, 77 (2008).

    Article  CAS  Google Scholar 

  18. J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, J. Mater. Process. Technol. 149, 616 (2004).

    Article  CAS  Google Scholar 

  19. L. Peng, Y. Taiping, L. Sheng, L. Dongsheng, H. Qianwu, X. Weihao, and Z. Xiaoyan, Int. J. Mach. Tools Manuf. 45, 1288 (2005).

    Article  Google Scholar 

  20. E. Capello and B. Previtali, J. Mater. Process. Technol. 174, 223 (2006).

    Article  CAS  Google Scholar 

  21. M. F. Jensen, J. Bøttiger, H. H. Reitz, and M. E. Benzon, Wear 253, 1044 (2002).

    Article  CAS  Google Scholar 

  22. H. So, Wear 184, 161 (1995).

    Article  CAS  Google Scholar 

  23. B. Y. Choi and H. K. Kim, J. Kor. Inst. Met. & Mater. 47, 667 (2009).

    CAS  Google Scholar 

  24. D. J. Ha, H. K. Sung, J. W. Park, and S. H. Lee, J. Kor. Inst. Met. & Mater. 47, 406 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hoon Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, J.H., Joo, B.D., Mun, S.M. et al. Application of direct laser melting to restore damaged steel dies. Met. Mater. Int. 17, 167–174 (2011). https://doi.org/10.1007/s12540-011-0223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-0223-z

Keywords

Navigation