Skip to main content
Log in

Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The material flow and crystallographic orientation in aluminum alloy sheets joined by friction stir welding (FSW) were investigated by electron back scattered diffraction (EBSD). The microstructure and microtexture of the material near the stir zone was found to be influenced by the rotational behavior of the tool pin. It was found that, during FSW, the forward movement of the tool pin resulted in loose contact between the tool pin and the receding material at the advancing side. This material behavior inside the joined aluminum plates was also observed by an X-ray micrograph by inlaying a gold marker into the plates. As the advancing speed of the tool increases at a given rotation speed, the loose contact region widens. As the microtexture of the material near the stir zone is very close to the simple shear texture on the basis of the frame of the tool pin in the normal and tangent directions, the amount of incompletely rotated material due to the loose contact could be estimated from the tilt angle of the shear texture in the pole figure around the key hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Dawes, Weld. Met. Fabrication 63, 13 (1995).

    CAS  Google Scholar 

  2. H. Schmidt, J. Hattel, and J. Wert, Model. Simul. Mater. Sci. Eng. 12, 143 (2004).

    Article  ADS  Google Scholar 

  3. M. M. Attallah and H. G. Salem, Mater. Sci. Eng. A 391, 51 (2005).

    Article  Google Scholar 

  4. M. Peel, A. Steuwer, M. Preuss, and P. J. Withers, Acta mater. 51, 4791 (2003).

    Article  CAS  Google Scholar 

  5. Y. S. Sato, Y. Kurihara, S. H. C. Park, H. Kokawa, and N. Tsuji, Scripta mater. 50, 57 (2004).

    Article  CAS  Google Scholar 

  6. S. H. Kang, H.-S. Chung, H. N. Han, K. H. Oh, C. G. Lee, and S.-J. Kim, Scripta mater. 57, 17 (2007).

    Article  CAS  Google Scholar 

  7. S. H. Kang, W. H. Bang, J.-H. Cho, H. N. Han, K. H. Oh, C. G. Lee, and S.-J. Kim, Mater. Sci. Forum. 495–497, 901 (2005).

    Article  Google Scholar 

  8. S. J. Hong, Y. H. Jang, Y. I. Jeong, T. J. Lee, C. G. Lee, S. J. Kim, and S. S. Kim, J. Kor. Inst. Met. & Mater. 45, 90 (2007).

    CAS  Google Scholar 

  9. Y. S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, and T. Hashimoto, Metall. Mater. Trans. A 32, 941 (2001).

    Article  Google Scholar 

  10. D. P. Field, T. W. Nelson, Y. Hovanski, and K. V. Jata, Metall. Mater. Trans. A 32, 2869 (2001).

    Article  Google Scholar 

  11. R. W. Fonda, J. F. Bingert, and K. J. Colligan, Scripta mater. 51, 243 (2004).

    Article  CAS  Google Scholar 

  12. R. W. Fonda and J. F. Bingert, Scripta mater. 57, 1052 (2007).

    Article  CAS  Google Scholar 

  13. P. B. Prangnell and C. P. Heason, Acta mater. 53, 3179 (2005).

    Article  CAS  Google Scholar 

  14. T. U. Seidel and A. P. Reynolds, Metall. Mater. Trans. A 32, 2879 (2001).

    Article  Google Scholar 

  15. K. Colligan, Weld. J. 65, 229 (1999).

    Google Scholar 

  16. J. A. Schneider and A. C. Nunes Jr., Metall. Trans. B 35, 777 (2004).

    Article  Google Scholar 

  17. B. C. Liechty and B. W. Webb, J. Mater. Process. Technol. 184, 240 (2007).

    Article  CAS  Google Scholar 

  18. H. N. B. Schmidt, T. L. Dickerson, and J. H. Hattel, Acta mater. 54, 1199 (2006).

    Article  CAS  Google Scholar 

  19. H. Schmidt and J. Hattel, Modell. Simul. Mater. Sci. Eng. 13, 77 (2005).

    Article  ADS  Google Scholar 

  20. P. Ulysse, Int. J. Mach. Tools Manuf. 42, 1549 (2002).

    Article  Google Scholar 

  21. P. A. Colegrove and H. R. Shercliff, Sci. Technol. Weld. Joining 9, 345 (2004).

    Article  CAS  Google Scholar 

  22. R. Nandan, G. G. Roy, and T. DebRoy, Metall. Mater. Trans. A 37, 1247 (2006).

    Article  Google Scholar 

  23. Y. H. Zhao, S. B. Lin, S. B. F. X. Qu, and L. Wu, Mater. Sci. Technol. 22, 45 (2006).

    Article  CAS  Google Scholar 

  24. Z. W. Chen, T. Pasang, and Y. Qi, Mater. Sci Eng. A 474, 312 (2008).

    Article  Google Scholar 

  25. J.-H. Cho, S. H. Kang, H. N. Han, and K. H. Oh, Met. Mater. Int. 14, 247 (2008).

    Article  CAS  ADS  Google Scholar 

  26. G. R. Canova, U. F. Kocks, and J. J. Jonas, Acta metall. 32, 211 (1984).

    Article  CAS  Google Scholar 

  27. F. Montheillet, M. Cohen, and J. J. Jonas, Acta metall. 32, 2077 (1984).

    Article  CAS  Google Scholar 

  28. F. Montheillet, P. Gilormini, and J. J. Jonas, Acta metall. 33, 705 (1985).

    Article  CAS  Google Scholar 

  29. L. S. Toth, P. Gilormini, and J. J. Jonas, Acta metall. 36, 3077 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Nam Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.H., Han, H.N., Oh, K.H. et al. Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy. Met. Mater. Int. 15, 1027–1031 (2009). https://doi.org/10.1007/s12540-009-1027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-1027-2

Keywords

Navigation