Skip to main content

Advertisement

Log in

The Application of Convolutional Neural Network Model in Diagnosis and Nursing of MR Imaging in Alzheimer's Disease

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The disease Alzheimer is an irrepressible neurologicalbrain disorder. Earlier detection and proper treatment of Alzheimer’s disease can help for brain tissue damage prevention. The study was intended to explore the segmentation effects of convolutional neural network (CNN) model on Magnetic Resonance (MR) imaging for Alzheimer's diagnosis and nursing. Specifically, 18 Alzheimer's patients admitted to Indira Gandhi Medical College (IGMC) hospital were selected as the experimental group, with 18 healthy volunteers in the Ctrl group. Furthermore, the CNN model was applied to segment the MR imaging of Alzheimer's patients, and its segmentation effects were compared with those of the fully convolutional neural network (FCNN) and support vector machine (SVM) algorithms. It was found that the CNN model demonstrated higher segmentation precision, and the experimental group showed a higher clinical dementia rating (CDR) score and a lower mini-mental state examination (MMSE) score (P < 0.05). The size of parahippocompalgyrus and putamen was bigger in the Ctrl (P < 0.05). In experimental group, the amplitude of low-frequency fluctuation (ALFF) was positively correlated with the MMSE score in areas of bilateral cingulum gyri (r = 0.65) and precuneus (r = 0.59). In conclusion, the grey matter structure is damaged in Alzheimer's patients, and hippocampus ALFF and regional homogeneity (ReHo) is involved in the neuronal compensation mechanism of hippocampal damage, and the caregivers should take an active nursing method.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  Google Scholar 

  2. Mantzavinos V, Alexiou A (2017) Biomarkers for Alzheimer’s disease diagnosis. Curr Alzheimer Res 14(11):1149–1154. https://doi.org/10.2174/1567205014666170203125942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bondi MW, Edmonds EC, Salmon DP (2017) Alzheimer’s disease: past, present, and future. J Int Neuropsychol Soc 23(9–10):818–831. https://doi.org/10.1017/S135561771700100X

    Article  PubMed  PubMed Central  Google Scholar 

  4. Briggs R, Kennelly SP, O’Neill D (2016) Drug treatments in Alzheimer’s disease. Clin Med (Lond) 16(3):247–253. https://doi.org/10.7861/clinmedicine

    Article  Google Scholar 

  5. Soria Lopez JA, González HM, Léger GC (2019) Alzheimer’s disease. Handb Clin Neurol 167:231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

    Article  PubMed  Google Scholar 

  6. Duc NT, Ryu S, Qureshi MNI, Choi M, Lee KH, Lee B (2020) 3D-deep learning based automatic diagnosis of Alzheimer’s disease with joint MMSE prediction using resting-state fMRI. Neuroinformatics 18(1):71–86. https://doi.org/10.1007/s12021-019-09419-w

    Article  PubMed  Google Scholar 

  7. Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, Initiative ADN (2020) Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med Image Anal 63:101694. https://doi.org/10.1016/j.media.2020.101694

    Article  PubMed  Google Scholar 

  8. Saha S, Pagnozzi A, Bourgeat P, George JM, Bradford D, Colditz PB, Pannek K (2020) Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model. Neuroimage 215:116807. https://doi.org/10.1016/j.neuroimage.2020.116807

    Article  PubMed  Google Scholar 

  9. Sharma A, Kumar R (2017) A framework for pre-computated multi-constrained quickest QoS path algorithm. J Telecommun Electron Comput Eng 9(3–6):73–77. https://doi.org/10.1016/j.future.2017.09.010

    Article  Google Scholar 

  10. Sharma A, Kumar R (2019) Service-level agreement—energy cooperative quickest ambulance routing for critical healthcare services. Arab J Sci Eng 44(4):3831–3848. https://doi.org/10.2174/2213275911666181025125224

    Article  Google Scholar 

  11. Ito K, Ahadieh S, Corrigan B, French J, Fullerton T, Tensfeldt T, Alzheimer’s Disease Working Group (2010) Disease progression meta-analysis model in Alzheimer’s disease. Alzheimer’s Dementia 6(1):39–53. https://doi.org/10.1016/j.jalz.2009.05.665

    Article  CAS  PubMed  Google Scholar 

  12. Farooq A, Anwar S, Awais M, Rehman S (2017) A deep CNN based multi-class classification of Alzheimer's disease using MRI. In: 2017 IEEE International Conference on Imaging systems and techniques (IST). IEEE, pp. 1–6. https://doi.org/10.1016/j.future.2017.09.010

  13. Nikolac Perkovic M, Pivac N (2019) Genetic markers of Alzheimer’s disease. Adv Exp Med Biol 1192:27–52. https://doi.org/10.1007/978-981-32-9721-0_3

    Article  CAS  PubMed  Google Scholar 

  14. Reiss AB, Arain HA, Stecker MM et al (2018) Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 29(6):613–627. https://doi.org/10.1515/revneuro-2017-0063

    Article  CAS  Google Scholar 

  15. Lumini A, Nanni L (2018) Convolutional neural networks for ATC classification. Curr Pharm Des 24(34):4007–4012. https://doi.org/10.2174/1381612824666181112113438

    Article  CAS  PubMed  Google Scholar 

  16. Naseri NN, Wang H, Guo J et al (2019) The complexity of tau in Alzheimer’s disease. Neurosci Lett 13(705):183–194. https://doi.org/10.1016/j.neulet.2019.04.022

    Article  CAS  Google Scholar 

  17. Whitwell JL (2018) Alzheimer’s disease neuroimaging. Curr Opin Neurol 31(4):396–404. https://doi.org/10.1097/WCO.0000000000000570

    Article  PubMed  Google Scholar 

  18. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV (2011) Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging 32(10):1733–1741

    Article  Google Scholar 

  19. Basheera S, Ram MSS (2019) Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s Dementia Transl Res Clin Interv 5:974–986

    Article  Google Scholar 

  20. Huang Y, Xu J, Zhou Y, Tong T, Zhuang X, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (2019) Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network. Front Neurosci 13:509. https://doi.org/10.1093/brain/awp123

    Article  PubMed  PubMed Central  Google Scholar 

  21. Islam J, Zhang Y (2018) Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform 5(2):1–14. https://doi.org/10.1186/s40708-018-0080-3

    Article  CAS  Google Scholar 

  22. Biju KS, Alfa SS, Lal K, Antony A, Akhil MK (2017) Alzheimer’s detection based on segmentation of MRI image. Procedia Comput Sci 115:474–481. https://doi.org/10.1016/j.procs.2017.09.088

    Article  Google Scholar 

  23. Pan D, Zeng A, Jia L, Huang Y, Frizzell T, Song X (2020) Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front Neurosci. https://doi.org/10.3389/fnins.2020.00259

    Article  PubMed  PubMed Central  Google Scholar 

  24. Albright J, Initiative ADN (2019) Forecasting the progression of Alzheimer’s disease using neural networks and a novel preprocessing algorithm. Alzheimer’s Dementia Transl Res Clin Interv 5:483–491. https://doi.org/10.1016/j.trci.2019.07.001

    Article  Google Scholar 

  25. Bae JB, Lee S, Jung W, Park S, Kim W, Oh H, Kim KW (2020) Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-79243-9

    Article  CAS  Google Scholar 

  26. Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, Alzheimer’s Disease Neuroimaging Initiative (2018) Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front Neurosci 12:777. https://doi.org/10.3389/fnins.2018.00777

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kruthika KR, Maheshappa HD, Initiative ADN (2019) Multistage classifier-based approach for Alzheimer’s disease prediction and retrieval. Inform Med Unlocked 14:34–42. https://doi.org/10.1016/j.imu.2018.12.003

    Article  Google Scholar 

  28. Li Q, Liu Y, Sun M (2017) Autophagy and Alzheimer’s disease. Cell Mol Neurobiol 37(3):377–388. https://doi.org/10.1007/s10571-016-0386-8

    Article  CAS  PubMed  Google Scholar 

  29. Robinson N, Grabowski P, Rehman I (2018) Alzheimer’s disease pathogenesis: Is there a role for folate? Mech Ageing Dev 174:86–94. https://doi.org/10.1016/j.mad.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  30. Bolós M, Perea JR, Avila J (2017) Alzheimer’s disease as an inflammatory disease. Biomol Concepts 8(1):37–43. https://doi.org/10.1515/bmc-2016-0029

    Article  CAS  PubMed  Google Scholar 

  31. Sharma A, Ansari MD, Kumar R (2017) A comparative study of edge detectors in digital image processing. In: 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). IEEE, pp. 246–250

  32. Tee LM, Kan EY, Cheung JC et al (2016) Magnetic resonance imaging of the fetal brain. Hong Kong Med J 22(3):270–278. https://doi.org/10.12809/hkmj154678

    Article  PubMed  Google Scholar 

  33. Sharma A, Kumar R (2019) Risk-energy aware service level agreement assessment for computing quickest path in computer networks. Int J Reliab Saf 13(1–2):96–124. https://doi.org/10.1155/2019/4109453

    Article  Google Scholar 

  34. Hlavac M, Wirtz CR, Halatsch ME (2017) Intraoperative magnetic resonance imaging. HNO 65(1):25–29. https://doi.org/10.1007/s00106-016-0240-9

    Article  CAS  PubMed  Google Scholar 

  35. Poongodi M, Sharma A, Vijayakumar V, Bhardwaj V, Sharma AP, Iqbal R, Kumar R (2020) Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Comput Electr Eng 81:106527. https://doi.org/10.1016/j.compeleceng.2019.106527

    Article  Google Scholar 

  36. Dhiman G, Amandeep K (2017) Spotted hyena optimizer for solving engineering design problems. In: 2017 international conference on machine learning and data science (MLDS). IEEE, pp 114–119

  37. Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174. https://doi.org/10.1016/j.engappai.2019.03.021

    Article  Google Scholar 

  38. Dhiman G, Amandeep K (2019) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In: Soft computing for problem solving. Springer, Singapore, , pp 599–615. https://doi.org/10.1007/978-981-13-1592-3_47

  39. Kaur A, Gaurav D (2019) A review on search-based tools and techniques to identify bad code smells in object-oriented systems. I;n Harmony search and nature inspired optimization algorithms. Springer, Singapore, pp 909–921. https://doi.org/10.1007/978-981-13-0761-4_86

  40. Dhiman G (2020) MOSHEPO: a hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl Intell 50(1):119–137. https://doi.org/10.1007/s10489-019-01522-4

    Article  Google Scholar 

  41. Dhiman G (2019) ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Computs. https://doi.org/10.1007/s00366-019-00826-w

    Article  Google Scholar 

  42. Garg M, Dhiman G (2020) Deep convolution neural network approach for defect inspection of textured surfaces. J Instit Electron Comput 2(1):28–38. https://doi.org/10.33969/JIEC.2020.2100.333

    Article  Google Scholar 

  43. Dhiman G, Mukesh S, Hari MP, Adam S, Harsimran K (2020) A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization. Eng Comput. https://doi.org/10.1007/s00366-020-00986-0

    Article  Google Scholar 

  44. Dhiman G, Garg M (2020) MoSSE: a novel hybrid multi-objective meta-heuristic algorithm for engineering design problems. Soft Comput 24(24):18379–18398. https://doi.org/10.1007/s00500-020-05046-9

    Article  Google Scholar 

  45. Dhiman G, Krishna KS, Mukesh S, Atulya N, Mohammad D, Adam S, Amandeep K, Ashutosh S, Essam HH, Korhan C (2020) MOSOA: a new multi-objective seagull optimization algorithm. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114150

    Article  Google Scholar 

  46. Kaur H, Anurag R, Sarvjit SB, Gaurav D (2020) MOEPO: a novel multi-objective emperor penguin optimizer for global optimization: Special application in ranking of cloud service providers. Eng Appl Artif Intell 96:104008. https://doi.org/10.1016/j.engappai.2020.104008

    Article  Google Scholar 

  47. Kaur M, Ranjit K, Narinder S, Gaurav D (2021) SChoA: a newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Eng Comput. https://doi.org/10.1007/s00366-020-01233-2

    Article  Google Scholar 

  48. Dhiman G, Victor C, Krishna KS, Achyut S (2021) ADOPT: automatic deep learning and optimization-based approach for detection of novel coronavirus COVID-19 disease using X-ray images. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1875049

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dhiman G, Vinoth VK, Amandeep K, Ashutosh S (2021) DON: deep learning and optimization-based framework for detection of novel coronavirus disease using X-ray images. Interdiscip Sci Comput Life Sci. https://doi.org/10.1007/s12539-021-00418-7

    Article  Google Scholar 

  50. Kaur S, Amandeep K, Gaurav D (2021) Deep analysis of quality of primary studies on assessing the impact of refactoring on software quality. Mater Today Proc. https://doi.org/10.1007/978-3-540-85279-7_20

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kaur A, Gaurav D, Meenakshi G (2021) Task Scheduling in Cloud Computing Using Spotted Hyena Optimizer. In: Impacts and Challenges of Cloud Business Intelligence. IGI Global, pp 136–149. https://doi.org/10.4018/978-1-7998-5040-3.ch009

  52. Vimal S et al (2016) Secure data packet transmission in MANET using enhanced identity-based cryptography. Int J New Technol Sc Eng 3(12):35–42. https://doi.org/10.1155/2015/365863

    Article  Google Scholar 

  53. Gopikumar S, Raja S, Robinson YH, Vimal S, Hangbae C, Seungmin R (2020) A method of landfill leachate management using internet of things for sustainable smart city development. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2020.102521

    Article  Google Scholar 

  54. Madhumitha R, Robinson YH, Vimal S (2020) Suresh Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images. Microprocess Microsyst. https://doi.org/10.1016/j.micpro.2020.103280

    Article  Google Scholar 

  55. Suresh A, Udendhran R, Vimal S (2019) An intelligent grid network based on cloud computing infrastructures. Novel Pract Trends Grid Cloud Comput. https://doi.org/10.4018/978-1-5225-9023-1.ch005

    Article  Google Scholar 

  56. Suresh A, Udendhran R, Vimal S (2019) Cloud-based predictive maintenance and machine monitoring for intelligent manufacturing for automobile industry. Novel Pract Trends Grid Cloud Comput. https://doi.org/10.4018/978-1-5225-9023-1.ch006

    Article  Google Scholar 

  57. Vimal S, Khari M, Dey N, Crespo RG, Robinson YH (2020) Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT. Comput Commun 151(1):355–364. https://doi.org/10.1016/j.comcom.2020.01.018

    Article  Google Scholar 

  58. Vimal S, Khari M, Crespo RG, Kalaivani L, Nilanjan D, Kaliappan M (2020) Energy enhancement using Multiobjective Ant colony optimization with Double Q learning algorithm for IoT based cognitive radio networks. Comput Commun 154:481–490

    Article  Google Scholar 

  59. Vimal S, Suresh A, Subbulakshmi P, Pradeepa S, Kaliappan M (2020) Edge Computing-Based Intrusion Detection System for Smart Cities Development Using IoT in Urban Areas. In: Kanagachidambaresan G., Maheswar R., Manikandan V., Ramakrishnan K. (eds) Internet of Things in Smart Technologies for Sustainable Urban Development. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/s10586-017-1092-0

  60. Vimal S et al (2020) Deep learning-based decision-making with wot for smart city development. In: Smart Innovation of Web of Things. CRC Press, 2020. 51–62

  61. Poongodi M, Sharma A, Hamdi M, Maode M, Chilamkurti N (2021) Smart healthcare in smart cities: wireless patient monitoring system using IoT. J Supercomput. https://doi.org/10.1007/s11227-021-03765-w

    Article  Google Scholar 

  62. Xu X, Li L, Sharma A (2021) Controlling messy errors in virtual reconstruction of random sports image capture points for complex systems. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-021-01094-y

    Article  Google Scholar 

  63. Sodhi GK, Kaur S, Gaba GS, Kansal L, Sharma A, Dhiman G (2021) COVID-19: role of robotics, artificial intelligence, and machine learning during pandemic. Curr Med Imaging. https://doi.org/10.2174/1573405617666210224115722

    Article  Google Scholar 

  64. Liu Y, Sun Q, Sharma A, Sharma A, Dhiman G (2021) Line Monitoring and Identification Based on Roadmap Towards Edge Computing. Wirel Personal Commun 1–24

  65. Fan, M., & Sharma, A. (2021). Design and implementation of construction cost prediction model based on SVM and LSSVM in industries 4.0. International Journal of Intelligent Computing and Cybernetics, DOI https://doi.org/10.1108/IJICC-10-2020-0142

  66. Sun H, Fan M, Sharma A (2021) Design and implementation of construction prediction and management platform based on building information modelling and three‐dimensional simulation technology in industry 4.0. IET Collaborative Intelligent Manufacturing

  67. Ren X, Li C, Ma X, Chen F, Wang H, Sharma A, Masud M (2021) Design of multi-information fusion based intelligent electrical fire detection system for green buildings. Sustainability 13(6):3405. https://doi.org/10.3390/su13063405

    Article  Google Scholar 

Download references

Acknowledgements

Wuhan education and science project “The Application of Convolutional Neural Network Model in Diagnosis and Nursing of MR Imaging in Alzheimer's disease” in Applied-Oriented Universities Taking Wuhan Business University. Author would also like to thank Indira Gandhi Medical College for allowing the experimental group of AD patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghui Li.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, L., Sharma, A. et al. The Application of Convolutional Neural Network Model in Diagnosis and Nursing of MR Imaging in Alzheimer's Disease. Interdiscip Sci Comput Life Sci 14, 34–44 (2022). https://doi.org/10.1007/s12539-021-00450-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00450-7

Keywords

Navigation