Skip to main content
Log in

Molecular Dynamics Simulations Reveal the Modulated Mechanism of STING Conformation

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Stimulator of interferon genes (STING), which is an integral ER-membrane protein, could induce an antiviral state and boost antitumor immunity. Recent experiments reported that different small molecules could modulate the conformation of the STING. However, the mechanism of small molecules modulating the conformation of STING is still unknown. To illustrate the conformational modulated mechanism of STING by small molecules at atomic level, we investigated the interactions between STING and the small molecules: cGAMP and diABZI with molecular dynamics (MD) simulations method. Interestingly, we found that the residues of STING in the binding pocket are more flexible in the monomers of STING than that in the dimer of STING. We also demonstrated that cGAMP and diABZI have a similar binding mode to STING monomers/dimer, and π–π stacking interactions play important roles for the agonists and STING. Our study proposed mechanistic insights into the STING conformation modulated by small molecules and we suggested that the special molecule (e. g. diABZI) could induce the conformational transition of STING from the “open” monomers to the “closed” dimer state. Our research may provide a clue for the development of cancer immunotherapy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramanjulu JM et al (2018) Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564:439–443. https://doi.org/10.1038/s41586-018-0705-y

    Article  CAS  PubMed  Google Scholar 

  2. Zhong S et al (2019) Computational study on new natural compound agonists of stimulator of interferon genes (STING). PLoS ONE 14:e0216678. https://doi.org/10.1371/journal.pone.0216678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng L et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–852. https://doi.org/10.1016/j.immuni.2014.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sen T et al (2019) Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 9:646–661. https://doi.org/10.1158/2159-8290.CD-18-1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demaria O et al (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Procd Natl Acad Sci 112:15408–15413. https://doi.org/10.1073/pnas.1512832112

    Article  CAS  Google Scholar 

  6. Sali TM et al (2015) Characterization of a novel human-specific STING agonist that elicits antiviral activity against emerging alphaviruses. PLoS Pathog 11:e1005324. https://doi.org/10.1371/journal.ppat.1005324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ding L et al (2018) PARP inhibition elicits STING-Dependent antitumor immunity in brca1-deficient ovarian cancer. Cell Rep 25:2972-2980.e5. https://doi.org/10.1016/j.celrep.2018.11.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berger G, Marloye M, Lawler SE (2019) Pharmacological modulation of the STING pathway for cancer immunotherapy. Trends Mol Med 25:412–427. https://doi.org/10.1016/j.molmed.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  9. Ghaffari A et al (2018) STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br J Cancer 119:440–449. https://doi.org/10.1038/s41416-018-0188-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li T, Chen ZJ (2018) The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215:1287–1299. https://doi.org/10.1084/jem.20180139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dobbs N et al (2015) STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18:157–168. https://doi.org/10.1016/j.chom.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahn J, Gutman D, Saijo S, Barber GN (2012) STING manifests self DNA-dependent inflammatory disease. Procd Natl Acad Sci 109:19386–19391. https://doi.org/10.1073/pnas.1215006109

    Article  Google Scholar 

  13. Jeremiah N et al (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520. https://doi.org/10.1172/jci79100

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carroll EC et al (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44:597–608. https://doi.org/10.1016/j.immuni.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanson MC et al (2015) Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants. J Clin Invest 125:2532–2546. https://doi.org/10.1172/JCI79915

    Article  PubMed  PubMed Central  Google Scholar 

  16. Woo S-R et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–842. https://doi.org/10.1016/j.immuni.2014.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Celis E (2015) STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol Immunother 64:1057–1066. https://doi.org/10.1007/s00262-015-1713-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shu C, Yi G, Watts T, Kao CC, Li P (2012) Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol 19:722–724. https://doi.org/10.1038/nsmb.2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ablasser A et al (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530–534. https://doi.org/10.1038/nature12640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carozza JA et al (2020) Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nat Cancer 1:184–196. https://doi.org/10.1038/s43018-020-0028-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bridgeman A et al (2015) Viruses transfer the antiviral second messenger cGAMP between cells. Science 349:1228–1232. https://doi.org/10.1126/science.aab3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bai J, Liu F (2019) The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes 68:1099–1108. https://doi.org/10.2337/dbi18-0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marcus A et al (2018) Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49:754-763.e4. https://doi.org/10.1016/j.immuni.2018.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai X, Chiu Y-H, Chen ZJ (2014) The cGAS-cGAMP-STING Pathway of cytosolic DNA sensing and signaling. Mol Cell 54:289–296. https://doi.org/10.1016/j.molcel.2014.03.040

    Article  CAS  PubMed  Google Scholar 

  25. Li A et al (2019) Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol 12:35–35. https://doi.org/10.1186/s13045-019-0721-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gao P et al (2014) Binding-pocket and lid-region substitutions render human STING sensitive to the species-specific drug DMXAA. Cell Rep 8:1668–1676. https://doi.org/10.1016/j.celrep.2014.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ergun SL, Li L (2020) Structural Insights into STING signaling. Trends Cell Biol 30:399–407. https://doi.org/10.1016/j.tcb.2020.01.010

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Wei D-Q, Wang J-F, Li Y-X (2011) A negative cooperativity mechanism of human CYP2E1 inferred from molecular dynamics simulations and free energy calculations. J Chem Inf Model 51:3217–3225. https://doi.org/10.1021/ci2004016

    Article  CAS  PubMed  Google Scholar 

  29. Gu R-X, Liu LA, Wang Y-H, Xu Q, Wei D-Q (2013) Structural comparison of the wild-type and drug-resistant mutants of the influenza A M2 proton channel by molecular dynamics simulations. J Phys Chem B 117:6042–6051. https://doi.org/10.1021/jp312396q

    Article  CAS  PubMed  Google Scholar 

  30. Bai C et al (2019) Influence of fullerenol on hIAPP aggregation: amyloid inhibition and mechanistic aspects. Phys Chem Chem Phys 21:4022–4031. https://doi.org/10.1039/C8CP07501H

    Article  CAS  PubMed  Google Scholar 

  31. Jin Y, Sun Y, Lei J, Wei G (2018) Dihydrochalcone molecules destabilize Alzheimer’s amyloid-β protofibrils through binding to the protofibril cavity. Phys Chem Chem Phys 20:17208–17217. https://doi.org/10.1039/C8CP01631C

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X et al (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51:226–235. https://doi.org/10.1016/j.molcel.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  33. Kopp J, Schwede T (2006) The SWISS-MODEL repository: new features and functionalities. Nucleic Acids Res 34:D315–D318. https://doi.org/10.1093/nar/gkj056

    Article  CAS  PubMed  Google Scholar 

  34. Bienert S et al (2017) The SWISS-MODEL repository - new features and functionality. Nucleic Acids Res 45:D313–D319. https://doi.org/10.1093/nar/gkw1132

    Article  CAS  PubMed  Google Scholar 

  35. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T (2017) Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 7:10480–10480. https://doi.org/10.1038/s41598-017-09654-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shao Y et al (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191. https://doi.org/10.1039/B517914A

    Article  CAS  PubMed  Google Scholar 

  37. Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta crystallographica Sect D Biol Crystallogr 60:1355–1363. https://doi.org/10.1107/s0907444904011679

    Article  Google Scholar 

  38. Case DA et al (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hornak V et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65:712–725. https://doi.org/10.1002/prot.21123

    Article  CAS  Google Scholar 

  40. Hess B, Kutzner C, van der Spoel D, Lindahl Er (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  41. Lindorff-Larsen K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinform 78:1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  Google Scholar 

  42. Guan X, Lin P, Knoll E, Chakrabarti R (2014) Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies. PLoS ONE 9:e107729–e107729. https://doi.org/10.1371/journal.pone.0107729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karaman B, Sippl W (2015) Docking and binding free energy calculations of sirtuin inhibitors. Eur J Med Chem 93:584–598. https://doi.org/10.1016/j.ejmech.2015.02.045

    Article  CAS  PubMed  Google Scholar 

  44. Sun Y, Qian Z, Wei G (2016) The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study. Phys Chem Chem Phys 18:12582–12591. https://doi.org/10.1039/C6CP01014H

    Article  CAS  PubMed  Google Scholar 

  45. Pitera JW (2014) Expected distributions of root-mean-square positional deviations in proteins. J Phys Chem B 118:6526–6530. https://doi.org/10.1021/jp412776d

    Article  CAS  PubMed  Google Scholar 

  46. Xu Yu, Zheng QC, Yu LY, Zhang HX, Sun CC (2013) A molecular dynamics and computational study of human KAT3 involved in KYN pathway. Sci China Chem 56:514–523. https://doi.org/10.1007/s11426-012-4802-8

    Article  CAS  Google Scholar 

  47. Mo Y et al (2018) The inhibitory effect of hydroxylated carbon nanotubes on the aggregation of human islet amyloid polypeptide revealed by a combined computational and experimental study. ACS Chem Neurosci 9:2741–2752. https://doi.org/10.1021/acschemneuro.8b00166

    Article  CAS  PubMed  Google Scholar 

  48. Zhan C, Chen Y, Tang Y, Wei G (2020) Green tea extracts EGCG and EGC display distinct mechanisms in disrupting Aβ42 protofibril. ACS Chem Neurosci 11:1841–1851. https://doi.org/10.1021/acschemneuro.0c00277

    Article  CAS  PubMed  Google Scholar 

  49. Lao Z, Chen Y, Tang Y, Wei G (2019) Molecular dynamics simulations reveal the inhibitory mechanism of dopamine against human islet amyloid polypeptide (hIAPP) aggregation and its destabilization effect on hIAPP protofibrils. ACS Chem Neurosci 10:4151–4159. https://doi.org/10.1021/acschemneuro.9b00393

    Article  CAS  PubMed  Google Scholar 

  50. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Funct Bioinform 55:383–394. https://doi.org/10.1002/prot.20033

    Article  CAS  Google Scholar 

  51. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210. https://doi.org/10.1002/wcms.1121

    Article  CAS  Google Scholar 

  52. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  53. Berhanu WM, Hansmann UHE (2013) The stability of cylindrin β-barrel amyloid oligomer models-a molecular dynamics study. Proteins 81:1542–1555. https://doi.org/10.1002/prot.24302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang T, Zhang J, Derreumaux P, Mu Y (2013) Molecular mechanism of the inhibition of EGCG on the alzheimer Aβ1–42 dimer. J Phys Chem B 117:3993–4002. https://doi.org/10.1021/jp312573y

    Article  CAS  PubMed  Google Scholar 

  55. Song M et al (2018) Exploring the mechanism of inhibition of Au nanoparticles on the aggregation of amyloid-β(16–22) peptides at the atom level by all-atom molecular dynamics. Int J Mol Sci 19:1815–1815. https://doi.org/10.3390/ijms19061815

    Article  CAS  PubMed Central  Google Scholar 

  56. Ouyang S et al (2012) Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36:1073–1086. https://doi.org/10.1016/j.immuni.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  57. Tsuchiya Y, Jounai N, Takeshita F, Ishii KJ, Mizuguchi K (2016) Ligand-induced ordering of the C-terminal tail primes STING for phosphorylation by TBK1. EBioMedicine 9:87–96. https://doi.org/10.1016/j.ebiom.2016.05.039

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shang G et al (2012) Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol 19:725–727. https://doi.org/10.1038/nsmb.2332

    Article  CAS  PubMed  Google Scholar 

  59. Gao P et al (2013) Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154:748–762. https://doi.org/10.1016/j.cell.2013.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bianchi V, Gherardini PF, Helmer-Citterich M, Ausiello G (2012) Identification of binding pockets in protein structures using a knowledge-based potential derived from local structural similarities. BMC Bioinform 13:S17–S17. https://doi.org/10.1186/1471-2105-13-S4-S17

    Article  CAS  Google Scholar 

  61. Stank A, Kokh DB, Fuller JC, Wade RC (2016) Protein binding pocket dynamics. Acc Chem Res 49:809–815. https://doi.org/10.1021/acs.accounts.5b00516

    Article  CAS  PubMed  Google Scholar 

  62. Malisi C et al (2012) Binding pocket optimization by computational protein design. PLoS ONE 7:e52505–e52505. https://doi.org/10.1371/journal.pone.0052505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sintim HO, Mikek CG, Wang M, Sooreshjani MA (2019) Interrupting cyclic dinucleotide-cGAS–STING axis with small molecules. MedChemComm 10:1999–2023. https://doi.org/10.1039/C8MD00555A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cavlar T, Deimling T, Ablasser A, Hopfner K-P, Hornung V (2013) Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J 32:1440–1450. https://doi.org/10.1038/emboj.2013.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zevini A, Olagnier D, Hiscott J (2017) Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38:194–205. https://doi.org/10.1016/j.it.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koch PD et al (2018) A high content screen in macrophages identifies small molecule modulators of STING-IRF3 and NFkB signaling. ACS Chem Biol 13:1066–1081. https://doi.org/10.1021/acschembio.7b01060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song M, Zhu Y, Wei G, Li H (2017) Carbon nanotube prevents the secondary structure formation of amyloid-β trimers: an all-atom molecular dynamics study. Mol Simul 43:1189–1195. https://doi.org/10.1080/08927022.2017.1321757

    Article  CAS  Google Scholar 

  68. Xinwei G, Yunxiang S, Feng D (2018) Structures and dynamics of β-barrel oligomer intermediates of amyloid-beta16–22 aggregation. Biochimica et Biophysica Acta (BBA) – Biomembranes 1860:1687–1697. https://doi.org/10.1016/j.bbamem.2018.03.011

    Article  CAS  Google Scholar 

  69. Sun Y, Ding F (2020) Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide. Nanoscale 12:6307–6317. https://doi.org/10.1039/C9NR09271D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao S et al (2020) Structural insight into the interactions between structurally similar inhibitors and SIRT6. Int J Mol Sci 21:2601–2601. https://doi.org/10.3390/ijms21072601

    Article  CAS  PubMed Central  Google Scholar 

  71. Wang X et al (2020) Molecular dynamics simulations reveal the mechanism of the interactions between the inhibitors and SIRT2 at atom level. Mol Simul 46:638–649. https://doi.org/10.1080/08927022.2020.1757093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Qingjie Zhao thanks the supporting from the "Personalized Medicines–Molecular Signature–based Drug Discovery and Development".

Author information

Authors and Affiliations

Authors

Contributions

LC, HL and QZ conceived and designed the research. LC performed the simulations. LC, SZ, YZ and YL analysed the simulation data. LC and HL wrote the paper. The article was approved by all authors.

Corresponding authors

Correspondence to Huiyu Li or Qingjie Zhao.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68788 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhao, S., Zhu, Y. et al. Molecular Dynamics Simulations Reveal the Modulated Mechanism of STING Conformation. Interdiscip Sci Comput Life Sci 13, 751–765 (2021). https://doi.org/10.1007/s12539-021-00446-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00446-3

Keywords

Navigation