Skip to main content
Log in

The molecular clock in terms of quantum information processing of coherent states, entanglement and replication of evolutionarily selected decohered isomers

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Evolutionary pressures have selected quantum uncertainty limits −ΔxΔp x ≥ 1/2ħ-to operate on metastable amino DNA protons. This introduces a probability of molecular clock arrangement, keto-amino → enol-imine, where product protons are entangled and participate in coupled quantum oscillation at frequencies of ∼ 1013 s−1. The ket “seen by” the transcriptase, reading a coherent enol-imine G′-state, is |φ >= α| + + > +β|+− > +γ|−+ > +δ|−−>. The transcriptase implements its measurement and generates an output qubit of observable genetic specificity information in an interval Δt ≪ 10−13 s. These quantum measurements can specify the relative distribution of coherent G′-C′ states at time of measurement. The ensuing quantum entanglement between coherent protons and transcriptase units is utilized as a resource to generate proper decoherence and introduce selected time-dependent substitutions, ts, and deletions, td. Topal-Fresco ts are G′202 → T, G′002 → C, *G0200 → A and *C2022 → T, whereas td are exhibited at coherent *A-*T sites. Variation in clock ‘tic-rate’ is a consequence of clock introduction of initiation codons — UUG, CUG, AUG, GUG — and stop codons, UAA, UAG, UGA. Using approximate quantum methods for times t < ∼ 100 y, the probability, P(t), of keto-aminoenolimine arrangement is P ρ (t) = 1/2(γ ρ /ħ)2 t 2 where γ ρ is the energy shift. This introduces a quantum Darwinian evolution model which provides insight into biological consequences of coherent states populating human genes, including inherited (CAG) n repeat tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. 2002. Molecular Biology of the Cell, 4th Edition. Garland, New York.

    Google Scholar 

  2. Allemann, R.K. 2009. Quantum Tunneling in Enzyme-Catalyzed Reactions. Royal Society of Chemistry: Cambridge, UK.

    Book  Google Scholar 

  3. Arndt, M., Juffmann, T., Vedral, V. 2009. Quantum physics meets biology. HFSP J 3, 386–400.

    Article  PubMed  CAS  Google Scholar 

  4. Baltz, R.H., Bingham, P.M., Drake, J.W. 1976. Heat mutagenesis in bacteriophage T4: The transition pathway. Proc Natl Acad Sci USA 73, 1269–1273.

    Article  PubMed  CAS  Google Scholar 

  5. Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K.W., Velculescu, V.E., Vogelstein, B., Nowak, M.A. 2007. Genetic progression and the waiting time to cancer. PLoS Comput Biol 3, e225.

    Article  PubMed  Google Scholar 

  6. Benzer, S. 1961. On the topography of the genetic fine structure. Proc Natl Acad Sci USA 47, 403–415.

    Article  PubMed  CAS  Google Scholar 

  7. Bingham, P.M., Baltz, R.H., Ripley, L.S., Drake, J.W. 1976. Heat mutagenesis in bacteriophage T4: The transversion pathway. Proc Natl Acad Sci USA 73, 4159–4163.

    Article  PubMed  CAS  Google Scholar 

  8. Biswas, A., Sharpiro, M., Brumer, P. 2010. Overlapping resonances in the resistance of superposition states to decohere. J Chem Phys 133, 014103.

    Article  PubMed  Google Scholar 

  9. Bothma, J.P., Gilmore, J.B., McKenzie, R.H. 2010. The role of quantum effects in proton transfer reactions in enzymes: Quantum tunneling in a noisy environment. New J Phys 12, Article No. 055002.

  10. Bromham, L., Penny, D. 2003. The modern molecular clock. Nat Rev Genet 4, 216–224.

    Article  PubMed  CAS  Google Scholar 

  11. Brouwer, J.R., Willemsen, R., Oostra, B.A. 2009. Microsatellite repeat instability and neurological disease. Bioessays 31, 71–83.

    Article  PubMed  CAS  Google Scholar 

  12. Castel, A.L., Cleary, J.D., Pearson, C.E. 2010. Repeat instability as the basis for human disease and as a potential target for therapy. Nat Rev Mol Cell Biol 11, 165–170.

    Article  CAS  Google Scholar 

  13. Ceron-Carrasco, J.P., Requena, A., Zuniga, J., Michaux, C., Perpete, E.A., Jacquemin, D. 2009. Intermolecular proton transfer in microhydrated guaninecytosine base pairs: A new mechanism for spontaneous mutation in DNA. J Phys Chem A 113, 10549–10556.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, J.M., Liang, L.M., Li, C.Z., Chen, P.X., Dai, H.Y. 2009. Distributed quantum computing in decoherence-free subspace via adiabatic passage. Opt Commun 282, 3181–3184.

    Article  CAS  Google Scholar 

  15. Cooper, D.N., Youssoufianm, H. 1988. The CpG dinucleotide and human genetic diseases. Hum Genet 78, 151–155.

    Article  PubMed  CAS  Google Scholar 

  16. Cooper, W.G. 1994. T4 phage evolution data in terms of a time-dependent Topal-Fresco mechanism. Biochem Genet 32, 383–385.

    Article  PubMed  CAS  Google Scholar 

  17. Cooper, W.G. 1995. Evolutionary origin of expandable G-C rich triplet repeat DNA sequences. Biochem Genet 33, 173–181.

    Article  PubMed  CAS  Google Scholar 

  18. Cooper, W.G. 1996. Hypothesis on a causal link between EMF and an evolutionary class of cancer and spontaneous abortion. Cancer Biochem Biophys 15, 151–170.

    PubMed  CAS  Google Scholar 

  19. Cooper, W.G. 2009a. Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited by bacteriophage T4. Biochem Genet 47, 392–410.

    Article  Google Scholar 

  20. Cooper, W.G. 2009b. Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states. BioSystems 97, 73–89.

    Article  PubMed  CAS  Google Scholar 

  21. Cooper, W.G. 2010a. Evolutionarily designed quantum information processing of coherent states in prokaryotic and eukaryotic DNA systems. In: Morris, J.E. (Ed.) Computer Science Research and the Internet. Nova Scientific Publishers, Inc., Hauppauge, New York, 1–43.

    Google Scholar 

  22. Cooper, W.G. 2010b. Transcriptase measurement of coupled entangled protons yields new proton-enzyme quantum entanglement. In: Moran, A.M. (Ed.) Quantum Entanglement. Nova Scientific Publishers, Inc., Hauppauge, New York, 1–35.

    Google Scholar 

  23. Cooper, W.G. 2011a. Accuracy in biological information technology involves enzymatic quantum processing and entanglement of decohered isomers. Information 2, 166–194.

    Article  Google Scholar 

  24. Cooper, W.G. 2011b. Coherent states as consequences of keto-amino → enol-imine hydrogen bond arrangements driven by quantum uncertainty limits on amino DNA protons. Int J Quantum Chem, in press.

  25. Cooper, W.G, Kouri, D.J. 1971. N-particle noninteracting Green’s function. J Math Phys 13, 809–812.

    Article  Google Scholar 

  26. Drake, J.W. 1966. Spontaneous mutations accumulating in bacteriophage T4 in the complete absence of DNA replication. Proc Natl Acad Sci USA 55, 738–743.

    Article  PubMed  CAS  Google Scholar 

  27. Duyano, M., Ambrose, C., Meyers, R., Novelletto, A., Persichette, F., Frontali, M., Folstein, S., Ross, C., Franz, M., Abbott, M., Gray, J., Conneally, P., Young, A., Penney, J., Hollingsworth, Z., Shoulson, I., Lazzarini, A., Falek, A., Koroshetz, W., Sax, D., Bird, E., Vonsattel, J., Bonilla, E., Alvir, J., Conde, J., Cha, J.H., Dure, L., Gomez, F., Ramos, M., Sanchez-Ramos, J., Snodgrass, S., de Yong, M., Wexler, N., Moscowitz, C., Penchaszadeh, G., MacFarlane, H., Anderson, M., Jenkins, B., Srinidhi, J., Barnes, G., Gusella, J., MacDonald, M. 1993. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4, 387–392.

    Article  Google Scholar 

  28. Ehrenberg, L., von Ehrenstein, G., Hedgren, A. 1957. Gonad temperature and spontaneous mutation rate in man. Nature 180, 1433–1434.

    Article  PubMed  CAS  Google Scholar 

  29. Elango, N., Kim, S-H., NICS Program, Vigoda, E., Yi, S.V. 2008. Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation. PLoS Comput Biol 4, e1000015.

    Article  PubMed  Google Scholar 

  30. Fassioli, F., Olaya-Castro, A. 2010. Distribution of entanglement in light-harvesting complexes and their quantum efficiencies. New J Phys 12, 085006.

    Article  Google Scholar 

  31. Grace, M., Brif, C., Rabitz, H., Walmsley, I.L., Kosut, R.L., Lidar, D.A. 2007. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. J Phys B: At Mol Opt Phys 40, S103–S125.

    Article  CAS  Google Scholar 

  32. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G.L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., O’Meara, S., Vastrik, I., Schmidt, E.E., Avis, T., Barthorp, S., Bhamra, G., Buck, G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K., Halliday, K., Harrison, R., Hills, K., Hinton, J., Jerkinson, A., Jones, D., Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Sheperd, R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates, A., Cahill, D.P., Louis, D.N., Campbell, P., Birney, E., Easton, D.F., Chenevix-Trench, G., Tan, M.H., Khoo, S.K., The, B.T., Yuen, S.T., Leung, S.Y., Wooster, R., Fetreal, P.A., Straton, M.R. 2007. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158.

    Article  PubMed  CAS  Google Scholar 

  33. Gusella, J.F., MacDonald, M.E., Ambrose, C.M., Duyao, M.P. 1993. Molecular genetics of Huntington’s disease. Arch Neurol 50, 1157–1163.

    PubMed  CAS  Google Scholar 

  34. Hwang, D.G., Green, P. 2004. Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad Sci USA 101, 13994–14001.

    Article  PubMed  CAS  Google Scholar 

  35. Jorgensen, W.L., Pranata, J. 1990. The importance of secondary interactions in triply hydrogen-bonded complexes: Guanine — cytosine vs uracil — diaminopyridine. J Am Chem Soc 112, 2008–2010.

    Article  CAS  Google Scholar 

  36. Kadenbach, B., Munscher, C., Frank, V., Muller-Hocker, J., Napiwotzki, J. 1995. Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutation Res 338, 161–172.

    Article  PubMed  CAS  Google Scholar 

  37. Kornberg, A. 1980. DNA Replication. W.H. Freeman & Company, San Francisco.

    Google Scholar 

  38. Kryachko, E.S., Sabin, J.R. 2003. Quantum chemical study of the hydrogen-bonded patterns in A-T base pairs of DNA: Origins of tautomeric mispairs, base flipping and Watson-Crick → Hoogsteen conversion. Int J Quantum Chem 91, 695–710.

    Article  CAS  Google Scholar 

  39. Kumar, S. 2005. Molecular clocks: Four decades of evolution. Nat Rev Genet 6, 654–662.

    Article  PubMed  CAS  Google Scholar 

  40. Löwdin, P.O. 1965. Quantum genetics and the aperiodic solid: Some aspects on the biological problems of heredity, mutations, aging and tumors in view of the quantum theory of the DNA molecule. Adv Quantum Chem 2, 213–359.

    Article  Google Scholar 

  41. McFadden, J., Al-Khalili, J. 1999. A quantum mechanical model of adaptive mutations. BioSystems 50, 203–211.

    Article  PubMed  CAS  Google Scholar 

  42. Mei, F., Yu, Y.F., Zhang, Z.M. 2009. Decoherencefree quantum memory for photonic state using atomic ensembles. Int J Quantum Info 7, 811–820.

    Article  Google Scholar 

  43. Merzbacher, E. 1997. Quantum Mechanics, 3rd Edition. John Wiley & Sons, New York.

    Google Scholar 

  44. Migliano, A.B., Vinicius, L., Lahr, M.M. 2007. Life history trade-offs explain the evolution of human pygmies. Proc Natl Acad Sci USA 104, 20216–20219.

    Article  PubMed  CAS  Google Scholar 

  45. Mirkin, S.M. 2007. Expandable DNA repeats and human diseases. Nature 447, 932–940.

    Article  PubMed  CAS  Google Scholar 

  46. Moser, A., Guza, R., Tretyakova, N., York, D. 2009. Density functional study of the influence of C-5 cytosine substitution in base pairs with guanine. Theoret Chem Acc 122, 179–188.

    Article  CAS  Google Scholar 

  47. Muller, H.J. 1950. Our load of mutations. Am J Hum Genet 2, 111–176.

    PubMed  CAS  Google Scholar 

  48. Nielson, M.A., Chuang, I.L. 2000. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  49. Oreshkov, O., Lidar, D.A., Brun, T.A. 2008. Operator error correction for continuous dynamics. Phys Rev A, 78, 022333.

    Article  Google Scholar 

  50. Panitchayangkoon, G., Hayes, D., Fransted, K.A., Caram, J.R., Harel, E., Wen, J.Z., Blankenship, R.E., Engel, G.S. 2010. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Nat Acad Sci USA 107, 12766–12770.

    Article  PubMed  CAS  Google Scholar 

  51. Pearson, C.E., Edamura, K.N., Cleary, J.D. 2005. Repeat instability: Mechanisms of dynamic mutation. Nat Rev Genet 6, 729–742.

    Article  PubMed  CAS  Google Scholar 

  52. Perry, G.H., Dominy, N.J. 2009. Evolution of the human pygmy phenotype. Trends Ecol Evolut 24, 218–225.

    Article  Google Scholar 

  53. Poccia, N., Ricci, A., Innocenti, D., Bianconi, A. 2009. A possible mechanism for evading temperature quantum decoherence in living matter by Feshbach resonance. Int J Mol Sci 10, 2084–2106.

    Article  PubMed  CAS  Google Scholar 

  54. Pranata, J, Wierschke, S.G., Jorgensen, W.L. 1991. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen bonded base pairs in chloroform. J Am Chem Soc 113, 2810–2819.

    Article  CAS  Google Scholar 

  55. Rezakhani, A.T., Kuo, W.J., Hamma, A., Lidar, D.A., Zanzrdi, P. 2009. Quantum adiabatic brachistochrone. Phys Rev Lett 108, 080502.

    Article  Google Scholar 

  56. Richards, R.I. 2001. Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. Mol Hum Genet 10, 2187–2194.

    Article  CAS  Google Scholar 

  57. Ripley, L.S. 1988. Estimation of in-vivo miscoding rates. Quantitative behavior of two classes of heatinduced DNA lesions. J Mol Biol 202, 17–34.

    CAS  Google Scholar 

  58. Rosenberg, S.M. 2001. Evolving responsively: Adaptive mutations. Nature Rev Genet 2, 504–515.

    Article  PubMed  CAS  Google Scholar 

  59. Semaka, A., Creighton, S., Warby, S., Hayden, M.R. 2006. Predictive testing for Huntington’s disease: interpretation and significance of intermediate alleles. Clin Genet 70, 283–294.

    Article  PubMed  CAS  Google Scholar 

  60. Snowdon, D.A., Kane, R.L., Beeson, W.L., Burke, G.L., Sprafka, J.M., Potter, J., Iso, H., Jacobs, D.R.Jr., Phillips, R.L. 1989. Is early natural menopause a biologic marker of health and aging? Am J Public Health 79, 709–714.

    Article  PubMed  CAS  Google Scholar 

  61. Topal, M.D., Fresco, J.R. 1976. Complementary base pairing and the origin of base substitutions. Nature 263, 285–289.

    Article  PubMed  CAS  Google Scholar 

  62. Vedral, V. 2010. Quantum Physics: Hot entanglement. Nature 468, 769–770.

    Article  PubMed  CAS  Google Scholar 

  63. Voorhuis, M., Onland-Moret, N.C., van der Schouw, Y.T., Fauser, B.C.J.M., Broekmans, F.J. 2010. Human studies on genetics of the age at natural menopause: A systematic review. Hum Reprod Update 16, 364–377.

    Article  PubMed  CAS  Google Scholar 

  64. Warby, S.C., Visscher, H., Butland, S., Pearson, C.E., Hayden, M.R. 2009. Haplotype background, repeat length evolution, and Huntington’s disease. Am J Hum Genet 85, 942–945.

    Article  PubMed  CAS  Google Scholar 

  65. Wells, R.D., Ashizawa, T. 2006. Genetic Instabilities and Neurological Diseases. Elsevier, San Diego.

    Google Scholar 

  66. Wolff, A., Krug, J. 2009. Robustness and epistasis in mutation-selection models. Physical Biol 6, 036007.

    Article  Google Scholar 

  67. Zoete, V., Meuwly, M. 2004. Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair. J Chem Phys 121, 4377–4388.

    Article  PubMed  CAS  Google Scholar 

  68. Zurek, W.H. 1991. Decoherence and the transition from quantum to classical. Phys Today 44, 36–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Grant Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, W.G. The molecular clock in terms of quantum information processing of coherent states, entanglement and replication of evolutionarily selected decohered isomers. Interdiscip Sci Comput Life Sci 3, 91–109 (2011). https://doi.org/10.1007/s12539-011-0065-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0065-x

Key words

Navigation