Skip to main content

Advertisement

Log in

An Estimation of Hydrometeorological Drought Stress over the Central Part of India using Geo-information Technology

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Drought is a creeping natural hazard commencing from lack of rainfall and generally associated with various climatic aspects. Drought-related water deficiency has severe consequences upon environmental processes and socioeconomic activities. In the past few decades, a number of drought indices have been developed for assessing the extent, onset, duration and intensity of drought. The Bundelkhand region located in the central part of India has been affected by recurrent drought events during the past few decades. This study seeks to examine hydrometeorological drought stress of that area using remote sensing and meteorological indicators, i.e., standardized precipitation index (SPI), hydrology-based rainfall anomaly index (RAI) and standardized water-level index (SWI). Daily rainfall data from Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) and Tropical Rainfall Measuring Mission (TRMM) were integrated with station-based groundwater datasets (1998–2015) to analyze the hydrometeorological drought condition of the area. In addition, groundwater datasets were used to evaluate the long-term hydrological drought situation and compared with meteorological drought indices. The study reveals a good agreement among all hydrometeorological drought indices distinctly in few years (2002 and 2013). However, the findings were not coherent in all years due to high rate of runoff and poor groundwater recharge. In spite of having normal rainfall, the undulating terrains of this rugged land confine the infiltration process and cause hydrological drought stress in several parts of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnew, C. T. (2000). Using the SPI to identify drought. Drought Network News,12, 1–8.

    Google Scholar 

  • Bhuiyan, C. (2004). Various drought indices for monitoring drought condition in Aravalli terrain of India. In Proceedings of the XXth ISPRS conference. Istanbul. http://www.isprs.org/istanbul2004/comm7/papers/243.pdf. Retrieved 16 Jan 2019.

  • Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation,8, 289–302.

    Article  Google Scholar 

  • Cancelliere, A., & Rossi, G. (2003). Droughts in Sicily and comparison of identified droughts in Mediterranean regions. In G. Rossi, A. Cancelliere, L. S. Pereira, T. Oweis, M. Shatanawi, & A. Zairi (Eds.), Tools for drought mitigation in Mediterranean Regions. Water science and technology library (Vol. 44, pp. 103–122). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Caparrini, F., & Manzella, F. (2009). Hydro-meteorological and vegetation indices for the drought monitoring system in Tuscany region, Italy. Advances in Geosciences,17, 105–110.

    Article  Google Scholar 

  • Deo, R. C., Byun, H. R., Adamowski, J. F., & Begum, K. (2017). Application of effective drought index for quantification of meteorological drought events: A case study in Australia. Theoretical and Applied Climatology,128, 359–379.

    Article  Google Scholar 

  • Dhurmea, K. R., Boojhawon, R., & Rughooputh, S. D. D. V. (2019). A drought climatology for Mauritius using the standardized precipitation index. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2019.1570209.

    Article  Google Scholar 

  • Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., et al. (2018). Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society,144, 292–312.

    Article  Google Scholar 

  • Dutta, D., Kundu, A., & Patel, N. R. (2013). Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto International,28, 192–209.

    Article  Google Scholar 

  • Dutta, D., Kundu, A., Patel, N. R., Saha, S. K., & Siddiqui, A. R. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). The Egyptian Journal of Remote Sensing Space Sciences,18, 53–63.

    Article  Google Scholar 

  • Edwards, D. C., & McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales (vol. 634, pp. 1–30). Fort Collins, Colorado, Department of Atmospheric Science, Colorado State University.

  • Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., & Husak, G. (2015). A global satellite-assisted precipitation climatology. Earth System Science Data.,7, 275–287.

    Article  Google Scholar 

  • Gupta, A. K., Nair, S. S., Ghosh, O., Singh, A., & Dey, S. (2014). Bundelkhand drought: Retrospective analysis and way ahead (p. 148). New Delhi: National Institute of Disaster Management.

    Google Scholar 

  • Guttman, N. B. (1998). Comparing the Palmer drought index and the standardized precipitation index. Journal of the American Water Resources Association,34, 113–121.

    Article  Google Scholar 

  • Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated drought monitoring and prediction system. Scientific Data,1, 1–10.

    Article  Google Scholar 

  • Hayes, M. J. (1999). Drought Indices. http://www.geology.um.maine.edu/ges121/lectures/22drought/indices1.pdf, Retrieved November 30, 2018. National Drought Mitigation Center.

  • Kumar, M. N., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2012). Spatiotemporal analysis of meteorological drought variability in the Indian region using standardized precipitation index. Meteorological Applications,19, 256–264.

    Article  Google Scholar 

  • Kundu, A., (2018). An appraisal of drought dynamics in Bundelkhand region (India) using geo-spatial techniques, Ph.D. Thesis, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences (collaboration with Indian Institute of Remote Sensing, ISRO), India 1–234.

  • Kundu, A., Denis, D. M., & Patel, N. R. (2015). Evaluation of the meteorological drought over the Bundelkhand region using geo-spatial techniques. Climate Change,1, 418–424.

    Google Scholar 

  • Kundu, A., Dwivedi, S., & Dutta, D. (2016). Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian Journal of Geoscience,9, 144. https://doi.org/10.1007/s12517-015-2185-9.

    Article  Google Scholar 

  • Li, X. H., Zhang, Q., & Xu, C. Y. (2012). Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang Lake Basin. Journal of Hydrology,426–427, 28–38.

    Article  Google Scholar 

  • Lin, Y., Deng, X., & Jin, Q. (2013). Economic effects of drought on agriculture in north China. International Journal of Disaster Risk Science,4, 59–67.

    Article  Google Scholar 

  • Loveday, A. (1914). The history and economics of Indian famines. London: G. Bells and Sons limited.

    Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th conference on applied climatology, American Meteorological Society, Boston (pp. 179–184).

  • Meng, J., Li, L., Hao, Z., Wang, J., & Shao, Q. (2014). Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. Journal of Hydrology,509, 320–332.

    Article  Google Scholar 

  • Mirabbasi, R., Fakheri-Fard, A., & Dinpashoh, Y. (2012). Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology,108, 191–206.

    Article  Google Scholar 

  • Mishra, S. S., & Nagarajan, R. (2013). Hydrological drought assessment in Tel river basin using standardized water level index (SWI) and GIS based interpolation techniques. International Journal of Conceptions on Mechanical and Civil Engineering,1(1), 1–4.

    Google Scholar 

  • Mohammad, A. H., Jung, H. C., Odeh, T., Bhuiyan, C., & Hussein, H. (2018). Understanding the impact of droughts in the Yarmouk Basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arabian Journal of Geosciences,11, 103.

    Article  Google Scholar 

  • Mossad, A., & Alazba, A. A. (2018). Determination and prediction of standardized precipitation index (SPI) using TRMM data in arid ecosystems. Arabian Journal of Geosciences,11, 132.

    Article  Google Scholar 

  • Naumann, G., Barbosa, P., Carrao, H., Singleton, A., & Vogt, J. (2012). Monitoring drought conditions and their uncertainties in Africa using TRMM data. Journal of Applied Meteorology and Climatology,51, 1867–1874.

    Article  Google Scholar 

  • Pai, D. S., Sridhar, L., Guhathakurta, P., & Hatwar, H. R. (2011). District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Natural Hazards,59, 1797–1813.

    Article  Google Scholar 

  • Patel, N. R., Chopra, P., & Dadhwal, V. K. (2007). Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications,14, 329–336.

    Article  Google Scholar 

  • Patel, N. R., & Yadav, K. (2015). Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India. Natural Hazards,77, 663–677.

    Article  Google Scholar 

  • Potopová, V., Cazac, V., Boincean, B., Soukup, J., & Trnka, M. (2019). Application of hydroclimatic drought indicators in the transboundary Prut River basin. Theoretical and Applied Climatology,137(3–4), 3103–3121.

    Article  Google Scholar 

  • Raziei, T., Saghafian, B., Paulo, A. A., Pereira, L. S., & Bordi, I. (2009). Spatial patterns and temporal variability of drought in western Iran. Water Resources Management,23, 439–455.

    Article  Google Scholar 

  • Sahoo, R. N., Dutta, D., Khanna, M., Kumar, N., & Bandyopadhyay, S. K. (2015). Drought assessment in the Dhar and Mewat Districts of India using meteorological, hydrological and remote-sensing derived indices. Natural Hazards,77, 733–751.

    Article  Google Scholar 

  • Sassa, K., Canuti, P., & Yin, Y. (2014). Landslide science for a safer geo-environment Volume 2: methods of landslide studies (p. 302). Berlin: Springer.

    Book  Google Scholar 

  • Shukla, S., McNally, A., Husak, G., & Funk, C. (2014). A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrology and Earth System Sciences,18, 3907–3921.

    Article  Google Scholar 

  • Su, F., Hong, Y., & Lettenmaier, D. P. (2008). Evaluation of TRMM Multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology,9, 622–640.

    Article  Google Scholar 

  • Thomas, T., Jaiswal, R. K., Galkate, R., Nayak, P. C., & Ghosh, N. C. (2016). Drought indicators-based integrated assessment of drought vulnerability: A case study of Bundelkhand droughts in central India. Natural Hazards,81, 1627–1652.

    Article  Google Scholar 

  • Tote, C., Patricio, D., Boogaard, H., Wijngaart, R. V. D., Tarnavsky, E., & Funk, C. (2015). Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing,7, 1758–1776.

    Article  Google Scholar 

  • Van Rooy, M. P. (1965). A rainfall anomaly index (RAI) independent of time and space. Notos,14, 43–48.

    Google Scholar 

  • Wilhite, D. A. (2000). Drought as a natural hazard: Concepts and definitions. In D. A. Wilhite (Ed.), Drought: a global assessment (pp. 3–18). London: Rutledge publishers.

    Google Scholar 

  • Wilhite, D. A., & Buchanan-Smith, M. (2005). Drought as hazard: understanding the natural and social context. In D. A. Wilhite (Ed.), Drought and water crises: science, technology, and management issues (pp. 3–29). CRC Press.

  • Wilhite, D. A., Hayes, M. J., & Svoboda, M. D. (2000). Drought monitoring and assessment: Status and trends in the United States, Drought and drought mitigation in Europe (pp. 149–160). Kluwer Academic Publishers.

  • Zakhem, B. A., & Kattaa, B. (2016). Investigation of hydrological drought using Cumulative Standardized Precipitation Index (SPI 30) in the eastern Mediterranean region (Damascus, Syria). Journal of Earth System Science. https://doi.org/10.1007/s12040-016-0703-0.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CHIRPS and TRMM for providing the gridded rainfall data required for successful completion of the research. We are also thankful to CGWB and WRIS (ISRO), Govt. of India for providing station-wise groundwater datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipanwita Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Patel, N.R., Denis, D.M. et al. An Estimation of Hydrometeorological Drought Stress over the Central Part of India using Geo-information Technology. J Indian Soc Remote Sens 48, 1–9 (2020). https://doi.org/10.1007/s12524-019-01048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-01048-9

Keywords

Navigation