Skip to main content
Log in

Remote Sensing Image Fusion Based on Nonlinear IHS and Fast Nonsubsampled Contourlet Transform

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The purpose of remote sensing image fusion is to inject the detail image extracted from the panchromatic (PAN) image into the low spatial resolution multispectral (MS) image. A novel remote sensing image fusion method based on fast nonsubsampled contourlet transform (FNSCT) and Nonlinear intensity-hue-saturation (IHS) is presented in this paper. Firstly, the Nonlinear IHS transform is performed on the multispectral image, and then the I-component representing the spatial resolution and the panchromatic image is transformed by NSCT to obtain the low frequency and high frequency. Finally, the coefficients are selected using the improved sum-modified-Laplacian (SML) method and the improved Log-Gabor filter in the low frequency and the high frequency, respectively. Experimental results show that the proposed method is the most advanced fusion method in subjective and objective evaluation, can provide more spatial information, and retain more spectral information compared with several other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aly, H. A., & Sharma, G. (2014). Aregularized model-based optimization framework for pan-sharpening. IEEE Transactions on Image Processing, 23(6), 2596–2608.

    Article  Google Scholar 

  • Burt, P. J., & Andelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4), 532–540.

    Article  Google Scholar 

  • Chai, Y., Li, H., & Li, Z. (2011). Multifocus image fusion scheme using focused region detection and multiresolution. Optics Communication, 284(19), 4376–4389.

    Article  Google Scholar 

  • Chai, Y., Li, H., & Zhang, X. (2012). Multifocus image fusion based on features contrast of multi-scale products in nonsubsampled contourlet transform domain. Optik-International Journal for Light and Electron Optics, 123(7), 569–581.

    Article  Google Scholar 

  • Do, M. N., & Vetterli, M. (2005). The contourlet transform: an efficient directional multi-resolution image representation. IEEE Transactions on Image Processing, 14(12), 2091–2106.

    Article  Google Scholar 

  • Dong, W., Li, X., Lin, X., & Li, Z. (2014). A bidimensional empirical mode decomposition method for fusion of multispectral and panchromatic remote sensing images. Remote Sensing, 6(9), 8446–8467.

    Article  Google Scholar 

  • Dong, L. M., Yang, Q. X., & Wu, H. Y. (2015). High quality multi-spectral and panchromatic image fusion technologies based on Curvelet transform. Neurocomputing, 159, 268–274.

    Article  Google Scholar 

  • Gerhard, H. E., Wichmann, F. A., & Bethge, M. (2013). How sensitive is the human visual system to the local statistics of natural images? PLoS Computational Biology, 9(1), 1–15.

    Article  Google Scholar 

  • Huang, W., & Jing, Z. (2007). Evaluation of focus measures in multi-focus image fusion. Pattern Recognition Letters, 28(4), 493–500.

    Article  Google Scholar 

  • Huang, W., Xiao, L., Wei, Z., Liu, H., & Tang, S. (2015). A new pan-sharpening method with deep neural networks. IEEE Geoscience and Remote Sensing Letters, 12(5), 1037–1041.

    Article  Google Scholar 

  • Kong, W., & Liu, J. (2013). Technique for image fusion based on NSST domain improved fast non-classical RF. Infrared Physics & Technology, 61, 27–36.

    Article  Google Scholar 

  • Li, S., Kang, X., & Hu, J. (2013). Image fusion with guided filtering. IEEE Transactions on Image Processing, 22(7), 2864–2875.

    Article  Google Scholar 

  • Li, H., Manjunath, B., & Mitra, S. (1995). Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 57(3), 235–245.

    Article  Google Scholar 

  • Li, X., & Ren, J. (2013). Fusion method of multispectral and panchromatic images based on improved PCNN and region energy in NSCT domain. Infrared and Laser Engineering, 42(11), 3096–3102.

    Google Scholar 

  • Liu, Y., Liu, S., & Wang, Z. (2015). A general framework for image fusion based on multi-scale transform and sparse representation. Information Fusion, 24, 147–164.

    Article  Google Scholar 

  • Luo, X. Q., Zhang, Z. C., & Wu, X. J. (2016). A novel algorithm of remote sensing image fusion based onshift-invariant Shearlet transform and regional selection. International Journal of Electronics and Communication (AEÜ), 70, 186–197.

    Article  Google Scholar 

  • Malek, A., & Yashtini, M. (2010). Image fusion algorithms for color and gray level images based on LCLS method and novel artificial neural network. Neurocomputing, 73(4–6), 937–943.

    Article  Google Scholar 

  • Minh, N. D., & Martin, V. (2003). The finite ridgelet transform for image representation. IEEE Transactions on Image Processing, 12(1), 16–28.

    Article  Google Scholar 

  • Raghavendra, R., & Busch, C. (2014). Novel image fusion scheme based on dependency measure for robust multispectral palmprint recognition. Pattern Recognition, 47(6), 2205–2221.

    Article  Google Scholar 

  • Ramakrishnan, N. K., & Simon, P. (2013). A bi-level IHS transform for fusing panchromatic and multispectral images [M]//Pattern Recognition and Machine Intelligence. Berlin/Heidelberg: Springer, pp. 367–372.

  • Redondo, R., Šroubek, F., Fischer, S., & Cristóbal, G. (2009). Multifocus image fusion using the log-Gabor transform and a multisize windows technique. Information Fusion, 10(2), 163–171.

    Article  Google Scholar 

  • Toet, A., Van Ruyven, L. J., & Valeton, J. M. (1989). Merging thermal and visual images by a contrast pyramid. Optical Engineering, 28(7), 789–792.

    Article  Google Scholar 

  • Upla, K. P., Joshi, S., Joshi, M. V., & Gajjar, P. P. (2015). Multi-resolution image fusion using edge-preserving _lters. Journal of Applied Remote Sensing, 9(1), 096025-1–096025-26.

    Article  Google Scholar 

  • Yang, Y., Tong, S., Huang, S., & Lin, P. (2015). Multifocus image fusion based on NSCT and focused area detection. IEEE Sensors Journal, 15(5), 2824–2838.

    Google Scholar 

  • Yang, Y., Wan, W. G., & Huang, S. Y. (2016). Remote sensing image fusion based on adaptive IHS and multiscale guided filter. Digital object identifier. https://doi.org/10.1109/access.2016.pp:4573-4582.

  • Yang, J., et al. (2011). A fingerprint recognition scheme based on assembling invariant moments for cloud computing communications. IEEE Systems Journal, 5(4), 574–583.

    Article  Google Scholar 

  • Yao, P., Li, J., Ye, X., Zhuang, Z., & Li, B. (2006). Iris recognition algorithm using modified log-Gabor filters. In Proc. IEEE int. conf. pattern recognit., Hong Kong, Aug. 2006, pp. 461–464.

  • Zhao, C., Guo, Y., & Wang, Y. (2015). A fast fusion scheme for infrared and visible light images in NSCT Domain. Infrared Physics & Technology, 72, 266–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoben Du.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Gao, S. Remote Sensing Image Fusion Based on Nonlinear IHS and Fast Nonsubsampled Contourlet Transform. J Indian Soc Remote Sens 46, 2023–2032 (2018). https://doi.org/10.1007/s12524-018-0859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0859-y

Keywords

Navigation