Skip to main content
Log in

Registration for Variform Object of Remote-Sensing Image Using Improved Robust Weighted Kernel Principal Component Analysis

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

For pre- and post-earthquake remote-sensing images, registration is a challenging task due to the possible deformations of the objects to be registered. To overcome this problem, in a previous paper, we proposed a registration method based on robust weighted kernel principal component analysis (RWKPCA) to precisely register the variform objects. Which was proved very effective in capturing the common robust kernel principal components (RKPCs) and generalized well for registration. Compared with previous paper, there are two improvements in this paper: Firstly, we developed the improved RWKPCA method from the robust loss function, and theoretically proved the robustness of the method; Secondly, a new construction of weight function by projection residual was given, which enables the great reduction of computing time. Finally, two experiments were conducted on the remote-sensing image registration in Wenchuan earthquake and change detection of Tangjiashan barrier lake, and the results showed that compared with the previous method, the registration accuracy was increased while the computational time was decreased a lot. Meanwhile, good performance on the change detection of barrier lake is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alzate, C., & Suykens, J. A. K. (2008). Kernel component analysis using an epsilon-insensitive robust loss function. Neural Networks, 19, 1583–1598.

    Article  Google Scholar 

  • Caelli, T., & Kosinov, S. (2004). An Eigenspace projection clustering method for inexact graph matching. Pattern Analysis and Machine Intelligence IEEE Transactions on, 26, 515–519.

    Article  Google Scholar 

  • Dhillon, I. S., Yuqiang, G., & Kulis, B. (2007). Weighted graph cuts without eigenvectors a multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1944–1957.

    Article  Google Scholar 

  • Ding, M., Tian, Z., Jin, Z., Xu, M., & Cao, C. (2010). Registration using robust kernel principal component for object-based change detection. Geoscience and Remote Sensing Letters IEEE, 7, 761–765.

    Article  Google Scholar 

  • Duan, X. F., Tian, Z., Ding, M. T., & Zhao, W. (2013). Registration of remote-sensing images using robust weighted kernel principal component analysis. International Journal of Electronics and Communications, 67, 20–28.

    Article  Google Scholar 

  • Han, J., Pauwels, E. J., & Zeeuw, P. D. (2013). Visible and infrared image registration in man-made environments employing hybrid visual features. Pattern Recognition Letters, 34, 42–51.

    Article  Google Scholar 

  • He, R., Hu, B.-G., Zheng, W.-S., & Kong, X.-W. (2011). Robust principal component analysis based on maximum correntropy criterion. Image Processing IEEE Transaction on, 20, 1485–1494.

    Article  Google Scholar 

  • He, X. C. and Yung, N. H. C. (2004). “Curvature scale space corner detector with adaptive threshold and dynamic region of support.” In ICPR’04, 791–794.

  • Huang, S. Y., Yeh, Y. R., & Eguchi, S. (2009). Robust Kernel Principal Component Analysis. Neural Computation, 21, 3179–3213.

    Article  Google Scholar 

  • Huber, P. J. (2005). Robust statistics (pp. 47–48). New Jersey: Wiley.

    Google Scholar 

  • Kaneko, S. I., Murase, I., & Igarashi, S. (2002). Robust Image Registration by Increment Sign Correlation. Pattern Recognition, 35, 2223–2234.

    Article  Google Scholar 

  • Li, Q. (2007). Steerable filter based multiscale registration method for Jers-1 Sar and Aster Images. Geoscience and Remote Sensing Symposium, IEEE Transactions on pp. 381–384.

  • Lu, C. D., Zhang, T. Y., Du, X. Z. and Li, C. P. (2004). “A Robust Kernel Pca Algorithm.” In ICMLC, 3084-3087. Shanghai, China.

  • Moigne, J. L., Netanyahu, N. S. & Eastman, R. D. (2011). Image Registration for Remote Sensing (pp. xii–xii). Cambridge: Cambridge University Press.

  • Pang, Y. W., & Wang, L. (2010). Generalized Kpca by adaptive rules in feature space. International Journal of Computer Mathematics, 87, 956–968.

    Article  Google Scholar 

  • Sahbi, H. (2007). Kernel Pca for similarity invariant shape recognition. Neurocomputing, 70, 3034–3045.

    Article  Google Scholar 

  • Salah, M. B., Mitiche, A., & Ayed, I. B. (2011). Multiregion image segmentation by parametric kernel graph cuts. Image ProcessingIEEE Transactions on, 20, 545–557.

    Article  Google Scholar 

  • Scholkopf, B., Mika, S., Burges, C. J., Knirsch, P., Muller, K.-R., Ratsch, G., & Smola, A. J. (1999). Input space versus feature space in kernel-based methods. Neural Networks, IEEE Transactions on, 10, 1000–1017.

    Article  Google Scholar 

  • Scholkopf, B., Smola, A., & Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319.

    Article  Google Scholar 

  • Scott, G. L., & Longuet-Higgins, H. C. (1991). An algorithm for associating the features of two images. Proceedings of the Royal Society of London. Series B: Biological Sciences, 244, 21–26.

    Article  Google Scholar 

  • Shapiro, L. S., & Michael Brady, J. (1992). Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10, 283–288.

    Article  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888–905.

    Article  Google Scholar 

  • Taylor, J. H., & Cristianini, N. (2004). Kernel methods for pattern analysis (pp. 148–150). Cambridge: Cambridge Press.

    Book  Google Scholar 

  • Wang, H. & Hancock, E. R. (2004). A kernel view of spectral point pattern matching. In Structural, Syntactic, and Statistical Pattern Recognition (Ed.), pp. 361–369 (Springer).

  • Yan, W., Tian, Z., Duan, X., & Pan, L. (2013). Feature matching based on unsupervised manifold alignment. Machine Vision and Applications, 24, 983–994.

    Article  Google Scholar 

  • Zhang, Z., Tian, Z., Ding, M., & Basu, A. (2013). Improved robust kernel subspace for object-based registration and change detection. Ieee Geoscience and Remote Sensing Letters, 10, 791–795.

    Article  Google Scholar 

  • Zitova, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21, 977–1000.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China (under Grant NO.61201323, NO.60972150 and NO.11426160), and Doctoral foundation of Taiyuan University of Science and Technology(NO.20142008, NO.20142009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifa Duan.

Appendices

Appendix 1: Proof of Proposition 1

Proof: Firstly, let ψ(x i ) = w i ϕ(x i ), i = 1, 2, ⋯ n, \( {\mathbf{C}}_{\mathbf{W}}=\frac{1}{n}{\displaystyle \sum_{i=1}^n\psi \left({\mathbf{x}}_i\right)\psi {\left({\mathbf{x}}_i\right)}^T}=\frac{1}{n}{\displaystyle \sum_{i=1}^n{w}_i^2\phi \left({\mathbf{x}}_i\right)\phi {\left({\mathbf{x}}_i\right)}^T} \), Ũ K is the space spanned by the first k eigenvectors of C W , then by Lemma 1 one can easily get that Ũ K dose solve the optimization problem

$$ \begin{array}{l}{ \min}_{\mathbf{U}}\kern1.5em {\mathrm{J}}^{\perp}\left(\tilde{\mathbf{U}}\right)={{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{{\tilde{\mathbf{U}}}^{\perp }}\left(\psi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2\\ {} subject\kern0.5em \mathrm{t}\mathrm{o}\kern0.5em \dim\ \tilde{\mathbf{U}}=k.\end{array} $$
(23)

Substituting ψ(x i ) = w i ϕ(x i ) into (23), one proves that Ũ K dose solve the following optimization problem

$$ \begin{array}{l}{ \min}_{\mathbf{U}}\kern1.5em {\mathrm{J}}^{\perp}\left(\tilde{\mathbf{U}}\right)={{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{{\tilde{\mathbf{U}}}^{\perp }}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2\\ {} subject\kern0.5em \mathrm{t}\mathrm{o}\kern0.5em \dim\ \tilde{\mathbf{U}}=k.\end{array} $$
(24)

Having equation (24) and to prove equation (23), one only need to prove that \( {{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{{\tilde{\mathbf{U}}}^{\perp }}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i{P}_{{\tilde{\mathbf{U}}}^{\perp }}\left(\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2 \). Using the definition of residual and Pythagoras’s theorem, one gets

$$ \begin{array}{l}{{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{{\tilde{\mathbf{U}}}^{\perp }}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i\phi \left({\mathbf{x}}_i\right)-{P}_{\tilde{\mathbf{U}}}\Big({w}_i\phi \left({\mathbf{x}}_i\right)\right\Vert}}_2^2\hfill \\ {}={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i\phi \left({\mathbf{x}}_i\right)\right\Vert}}_2^2-{{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{\tilde{\mathbf{U}}}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2\hfill \end{array} $$
(25)

Let Ũ = [ũ 1, ũ 2, ⋯ ũ k ], then one obtains

$$ {P}_{\tilde{\mathbf{U}}}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)=\left({P}_{{\tilde{\mathbf{u}}}_1}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right),{P}_{{\tilde{\mathbf{u}}}_2}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right),\cdots {P}_{{\tilde{\mathbf{u}}}_k}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right) $$
(26)

By equation (26) one can compute the projection of ϕ(x i ) on ũ t

$$ \begin{array}{l}{P}_{{\tilde{\mathbf{u}}}_t}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)=\left\langle {\tilde{\mathbf{u}}}_t,{w}_i\phi \left({\mathbf{x}}_i\right)\right\rangle ={w}_i\phi \left({\mathbf{x}}_i\right)\cdot {\tilde{\mathbf{u}}}_t = {w}_i\left(\phi \left({\mathbf{x}}_i\right)\cdot {\tilde{\mathbf{u}}}_t\right)\\ {}\kern4.5em ={w}_i{P}_{{\tilde{\mathbf{u}}}_t}\left(\phi \left({\mathbf{x}}_i\right)\right)\end{array} $$
(27)

Where ũ t is the t th component of Ũ. Combining equation (26) and (27), one gets

$$ \begin{array}{l}{\left\Vert {P}_{\tilde{\mathbf{U}}}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}_2^2={\left\Vert \left({P}_{{\tilde{\mathbf{U}}}_1}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right),{P}_{{\tilde{\mathbf{u}}}_2}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right),\cdots {P}_{{\tilde{\mathbf{u}}}_k}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right)\right\Vert}_2^2\hfill \\ {}\begin{array}{lllll}\hfill & \hfill & \hfill & \hfill & ={\left\Vert \left({w}_i{P}_{{\tilde{\mathbf{U}}}_1}\left(\phi \left({\mathbf{x}}_i\right)\right),{w}_i{P}_{{\tilde{\mathbf{u}}}_2}\left(\phi \left({\mathbf{x}}_i\right)\right),\cdots {w}_i{P}_{{\tilde{\mathbf{u}}}_k}\left(\phi \left({\mathbf{x}}_i\right)\right)\right)\right\Vert}_2^2\hfill \end{array}\hfill \\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill ={\left\Vert {w}_i\left({P}_{{\tilde{\mathbf{U}}}_1}\left(\phi \left({\mathbf{x}}_i\right)\right),{P}_{{\tilde{\mathbf{u}}}_2}\left(\phi \left({\mathbf{x}}_i\right)\right),\cdots {P}_{{\tilde{\mathbf{u}}}_k}\left(\phi \left({\mathbf{x}}_i\right)\right)\right)\right\Vert}_2^2\hfill \end{array}\hfill \\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill ={\left\Vert {w}_i{P}_{\tilde{\mathbf{U}}}\left(\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}_2^2\hfill \end{array}\hfill \end{array} $$
(28)

Substituting (28) into (25) leads to

$$ \begin{array}{l}{{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{{\tilde{\mathbf{U}}}^{\perp }}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i\phi \left({\mathbf{x}}_i\right)\right\Vert}}_2^2-{{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{\tilde{\mathbf{U}}}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2\hfill \\ {}={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i\phi \left({\mathbf{x}}_i\right)\right\Vert}}_2^2-{{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i{P}_{\tilde{\mathbf{U}}}\left(\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2={\displaystyle {\sum}_{i=1}^n{w}_i^2\left({\left\Vert \phi \left({\mathbf{x}}_i\right)\right\Vert}_2^2-{\left\Vert {P}_{\tilde{\mathbf{U}}}\left(\phi \left({\mathbf{x}}_i\right)\right)\Big)\right\Vert}_2^2\right)}\hfill \\ {}={{\displaystyle {\sum}_{i=1}^n{w_i}^2\left\Vert \phi \left({\mathbf{x}}_i\right)-{P}_{\tilde{\mathbf{U}}}\left(\phi \left({\mathbf{x}}_i\right)\right)\Big)\right\Vert}}_2^2={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i\Big(\phi \left({\mathbf{x}}_i\right)-{P}_{\tilde{\mathbf{U}}}\left(\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2\hfill \\ {}={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i{P}_{{\tilde{\mathbf{U}}}^{\perp }}\left(\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2\hfill \end{array} $$
(29)

Then \( {{\displaystyle {\sum}_{i=1}^n\left\Vert {P}_{{\tilde{\mathbf{U}}}^{\perp }}\left({w}_i\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2={{\displaystyle {\sum}_{i=1}^n\left\Vert {w}_i{P}_{{\tilde{\mathbf{U}}}^{\perp }}\left(\phi \left({\mathbf{x}}_i\right)\right)\right\Vert}}_2^2 \) was proved, so the proposition 1 was held.

Appendix 2: Proof of Proposition 2

Proof: Firstly, we prove the symmetry of K W . (K W )T = (WKW)T = W T K T W T = WKW = K W . Secondly, we prove K W is positive semi-definite. Assume the eigenvalues of K is λ i (1 ≤ i ≤ n), then the eigenvalues of K W is w 2 i λ i (1 ≤ i ≤ n), for K is positive semi-definite, all λ i (1 ≤ i ≤ n) are greater than or equal to zero, so all w 2 i λ i (1 ≤ i ≤ n) are also greater than or equal to zero, which proves that K W is positive semi-definite, so K W is also a mercer kernel.

Appendix 3

Fig. 6
figure 6

Original ALOS-PALSAR intensity images and their corresponding segmented ones of Shangyou reservoir. a Pre-earthquake image acquired on February 17, 2008; b The segmented image of (a); c Post-earthquake image acquired on May 19, 2008; d The segmented image of (c)

Fig. 7
figure 7

Original ALOS-PALSAR intensity images and their corresponding segmented ones of Baishuihe reservoir. a Pre-earthquake image acquired on February 17, 2008; b The segmented image of (a); c Post-earthquake image acquired on May 19, 2008; d The segmented image of (c)

Fig. 8
figure 8

The ALOS AVNIR-2 images of the study area. Both images are combined by band 3 (Red color), band 2 (Green color) and band 1 (Blue color). a The pre-earthquake image acquired on Mar. 31, 2007; b The post-earthquake image acquired on May 16, 2008

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Qi, P. & Tian, Z. Registration for Variform Object of Remote-Sensing Image Using Improved Robust Weighted Kernel Principal Component Analysis. J Indian Soc Remote Sens 44, 675–686 (2016). https://doi.org/10.1007/s12524-015-0545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0545-2

Keywords

Navigation