Skip to main content
Log in

Evaluation of size-related salmonid fish vertebrae deformation due to compression: an experimental approach

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

An experimental program of uniaxial compression forces on fresh and dry salmonid vertebrae of different sizes is presented to show what diagnostic features compression generates on these bones. The study found that diagnostic features exist, but their frequency often depends on size and the amount of fat that vertebrae contain when subjected to uniaxial compression. These signatures provide reference tools to assess formation processes of fish bone assemblages, whether archaeological or paleontological. The experimental data were later applied to a case study of a salmonid assemblage from the Late Upper Paleolithic to Mesolithic site of Santa Catalina (Basque country, Spain), to assess the validity of a hypothesis postulating that prehistoric salmonid populations from the Cantabrian region were subjected to overexploitation and that this phenomenon brought about a decrease in the mean size of specimens before the onset of the Neolithic in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data underlying this study are within the paper. Also, experimental specimens are available at the Laboratory of Experimental Taphonomy, Museo Nacional de Ciencias Naturales, Madrid, Spain.

Code availability (software application or custom code)

Not applicable.

References

  • Adams D, Rohlf FJ, Slice D (2013) A field comes of age: Geometric morphometrics in the 21th century. Hystrix 24(1):7–14

    Google Scholar 

  • Barrett JH (1995) Few know an earl in fishing clothes": fish middens and the economy of the viking age and late norse earldoms of Orkney and Caithness, Northern Scotland. PhD thesis, University of Glasgow

  • Berganza E, Arribas JL (2014). La Cueva de Santa Catalina (Lekeitio): La intervención arqueológica. Restos vegetales, animales y humanos. Kobie Serie Bizkaiko Arkeologi Indusketak - Excavaciones Arqueológicas en Bizkaia, nº 4.

  • Bookstein F (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

  • Butler V (1993) Natural vs cultural salmonid remains: origin of the Roadcut bones, Columbia River, Oregon, U.S.A. J Archaeol Sci 20:1–24

    Article  Google Scholar 

  • Butler VL, Chatters JC (1994) The role of bone density in structuring prehistoric salmon bone assemblages. J Archaeol Sci 21(3):413–424

    Article  Google Scholar 

  • Butler VL, Schroeder RA (1998) Do digestive processes leave diagnostic traces on fish bones? J Archaeol Sci 25(10):957–971

    Article  Google Scholar 

  • Butler VL, O’Connor JE (2004) 9,000 years of fishing on the Columbia River. Quat Res 62(1):1–8

    Article  Google Scholar 

  • Campbell M (2005) The taphonomy of fish bone from archaeological sites in East Otago, New Zealand. Archaeofauna 14:129–137

    Google Scholar 

  • Cannon A (2000) Assessing variability in Northwest coast salmon and herring fisheries: bucket-auger sampling of shell midden sites on the central coast of British Columbia. J Archaeol Sci 27(8):25–737

    Article  Google Scholar 

  • Casteel RW (1976) Fish remains in archaeology and paleoenvironmental studies. Academic Press, London

  • Colley S (1990) The analysis and interpretation of archaeological fish remains. J Archaeol Method and Theory 2:207–253

    Google Scholar 

  • Erlandson JM, Moss ML (2001) Shellfish feeders, carrion eaters, and the archaeology of aquatic adaptations. Am Antiqu 66(3):413–432

    Article  Google Scholar 

  • Frontini R, Roselló-Izquierdo E, Morales-Muñiz A, Denys C, Guillaud E, Fernández-Jalvo Y, Pesquero-Fernández MD (2021) Compression and digestion as agents of vertebral deformation in fish remains: an experimental study to interpret archaeological assemblages. J Archaeol Method Theory https://doi.org/10.1007/s10816-021-09527-5

  • Frontini R, Fernández-Jalvo Y, PesqueroFernández MD, Vecchi R, Bayón C (2019) Abrasion in archaeological fish bones from sand dunes. An experimental approach. Archaeol Anthropol Sci 11:4891–4907. https://doi.org/10.1007/s12520-019-00834-3

    Article  Google Scholar 

  • Guillaud E, Béarez P, Daujeard C, Defleur A, Desclaux E, Roselló Izquierdo E, Morales Muñiz A, Moncel MH (2021). Neanderthal foraging in freshwater ecosystems: a reappraisal of the Middle Paleolithic archaeological fish record from continental Western Europe. Quat Sci Rev https://doi.org/10.1016/j.quascirev.2020.106731.

  • Guillaud E, Beárez P, Denys C, Raimond S (2014) Taphonomy of a fish accumulation by the European Otter (Lutra lutra) in central France. J of Taph 12(1):69–83

    Google Scholar 

  • Guillaud E, Cornette R, Bearez P (2016) Is vertebral form a valid species-specific indicator for salmonids? The discrimination rate of trout and Atlantic salmon from archaeological to modern times. J Archaeol Sci 65(1):84–92

    Article  Google Scholar 

  • Guillaud E, Bearez P, Denys C, Raimond S (2017) New data on fish diet and bone digestion of the Eurasian otter (Lutra lutra) (Mammalia: Mustelidae) in central France. Eur Zool J 84(1):226–237. https://doi.org/10.1080/24750263.2017.1315184

    Article  Google Scholar 

  • Guillaud E, Morales-Muniz A, Roselló-Izquierdo E, Béarez Ph (2019) Taphonomy of Yellow-legged Gull ( Larus michahellis ) pellets from the Chafarinas islands (Spain). Canadian Journal of Zoology, NRC Research Press 97(2):100–111

  • Helfman GS, Collette BB, Facey DE (1997) The Diversity of Fishes. Blackwell Science, Malden

  • Hofkamp AR, Butler VL (2017) On the validity of the radiographic method for determining age of ancient salmon. J Arch Sci: Reports 12:449–456. https://doi.org/10.1016/j.jasrep.2017.02.010

    Article  Google Scholar 

  • Huber HR, Jorgensen JC, Butler VL, Baker G, Stevens R (2011) Can salmonids (Oncorhynchus spp.) be identified to species using vertebral morphometrics? J Arch Sci 38:136–146. https://doi.org/10.1016/j.jas.2010.08.020

    Article  Google Scholar 

  • Jones AK (1984) Some effects of the mammalian digestive system on fish bones. In N. Desse-Berset (Ed.), 2nd Fish Osteoarchaeology Meeting. Notes et Monographies Techniques 16: 61–65. CNRS. Centre de Recherches Archéologiques.

  • Jones AK (1999) Walking the cod: an investigation into the relative robustness of cod, Gadus morhua, skeletal elements. Internet Archaeol 7. https://doi.org/10.11141/ia.7.10

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  Google Scholar 

  • Lubinski P (1996) Fish heads, fish heads: an experiment on differential bone preservation in a salmonid fish. J Arch Sci 23:175–181

    Article  Google Scholar 

  • Mitteroecker P, Guz P (2009) Advances in geometric morphometrics. Evol Biol 36(2):235–247. https://doi.org/10.1007/s11692-009-9055-x

    Article  Google Scholar 

  • Morales A (1984). A study on the representativity and taxonomy of the fish faunas from two Mousterian sites on northern Spain with special reference to the trout (Salmon trutta L., 1758). In N. Desse-Berset (Ed.), 2nd Fish Osteoarchaeology Meeting. Notes et Monographies Techniques. 16 Centre de Recherches Archeologiques, Paris pp 41–59

  • Morales A and Rosenlund K (1979) Fish bone measurements. An attempt to standardize the measurement of fish bones from archaeological sites. Steenstrupia, Copenhage.

  • Morales A and Llorente-Rodríguez L (2018) Ichthyoarchaeology. In: Encyclopaedia of Global Archaeology. Springer. https://doi.org/10.1007/978-1-4419-0465-2_2124, http://refworks.springer.com/archaeology. Accessed July 2021

  • Moser HG, Richards WG, Cohen DM, Fahay MP, Kendall AW, Richardson SL (1984) Ontogeny and Systematics of fishes. Special Publication no.1. American Society of Ichthyologists and Herpetologists.

  • Nicholson RA (1992a) An assessment of the value of bone density measurements to archaeoichthyological studies. Int J Osteoarchaeol 2:139–154

    Article  Google Scholar 

  • Nicholson RA (1992b) Bone survival: the effects of sedimentary abrasion and trampling on fresh and cooked bone Int. J Osteoarchaeol 2:79–90

    Article  Google Scholar 

  • Nicholson RA (1996a) Bone degradation, burial medium and species representation: debunking the myths, an experiment-based approach. J Archaeol Sci 23:513–533

    Article  Google Scholar 

  • Nicholson RA (1996b) Fish bone diagenesis in different soils. Archaeofauna 5:79–91

    Google Scholar 

  • Nicholson RA (1998) Bone degradation in a compost heap. J Archaeol Sci 25:393–403

    Article  Google Scholar 

  • Robinson B, George L, Jacobson M, Yates G, Spiess AE, Cowie ER (2009) Atlantic salmon, archaeology and climate change in New England. J Archaeol Sci 36:2184–2191

    Article  Google Scholar 

  • Roselló Izquierdo E and Morales Muñiz A (2014) Las ictiofaunas de Santa Catalina (Lequeitio, Vizcaya): un registro singular para la prehistoria cantábrica. Kobie Serie Bizkaiko Arkeologi Indusketak - Excavaciones Arqueologicas en Bizkaia, nº 4: 161-262

  • Roselló-Izquierdo E, Berganza-Gochi E, Nores-Quesada C, Morales-Muñiz A (2016) Santa Catalina (Lequeitio, Basque Country): an ecological and cultural insight into the nature of prehistoric fishing in Cantabrian Spain. J Archaeol Sci Reports 6:645–653

    Article  Google Scholar 

  • Rolhf FJ (2015) The Tps series of software. Hystrix 26(1):1–4. https://doi.org/10.4404/hystrix-26.1-11264

    Article  Google Scholar 

  • Russ H (2010) A taphonomic approach to reconstructing Upper Palaeolithic hunter– gatherer fishing strategies (PhD.). University of Bradford.

  • Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446

    Article  Google Scholar 

  • Turrero P, Horreo JL, García-Vázquez E (2012) Same old Salmo? Changes in life history and demographic trends of North Iberian salmonids since the Upper Paleolithic as revealed by archaeological remains and BEAST analysis. Mol Ecol 21(10):2318–2329

    Article  Google Scholar 

  • Turrero P, García Vázquez E, Garcia de Leaniz C (2014) Shrinking fish: comparisons of prehistoric and contemporary salmonids indicate decreasing size at age across millennia. Royal Society Open Science 1:140026. https://doi.org/10.1098/rsos.14006

    Article  Google Scholar 

  • Turrero P, Horreo JL, López B, Pola IG, Arbizu M, García Vázquez E (2013) Chronological changes in Upper Paleolithic Fisheries revealed by Museum Archival Material. Palaios 28:228–232

    Article  Google Scholar 

  • Villa P, Mahieu E (1991) Breakage patterns of human long bones. J Hum Evol 21(1):27–48. https://doi.org/10.1016/0047-2484(91)90034-S

    Article  Google Scholar 

  • Watt J, Pierce GJ, Boyle PR (1997) Guide to identification of North Sea fish using premaxillae and vertebrae. ICES Coop Res Report 220:1–231

    Google Scholar 

  • Wheeler A and Jones AK (1989) Fishes. Cambridge University Press, Cambridge.

  • Zohar I, Belmaker M, Nadel D, Gafny S, Goren M, Hershkovitz I, Dayan T (2008) The living and the dead: how do taphonomic processes modify relative abundance and skeletal completeness of freshwater fish? Palaeogeogr Palaeoclimatol Palaeoecol 258:292–331

    Article  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD and Fink WL (2004). Geometric Morphometrics for Biologists: a primer. Elsevier Academic Press.

Download references

Acknowledgements

We are grateful to the two anonymous reviewers for their valuable comments. Also, we thank the editors of the special issue.

Funding

This work was supported by Spanish Ministerio de Tecnologia y Competitividad [grants numbers HAR2014-55722-P, HAR2017-88325-P and PID2020-118662 GB-100 granted to AMM and ER]. The experiments at the LET/LEA laboratory were covered by projects CGL-2016 79334-P (MINECO) and i-COOP2017B-20287 (CSIC) granted to YFJ and MINECO contract PTA2015-10834-I granted to M.D. Pesquero-Fernández; RF work was supported by Agencia Nacional de Promoción Científica y Tecnológica, Argentina [grants numbers PICT PICT 2015–0272 and PICT 2016 0368], and the Secretaría de Ciencia y Tecnología, Universidad Nacional del Sur [grant number PGI 22/I266].

Author information

Authors and Affiliations

Authors

Contributions

Arturo Morales-Muñiz, Romina Frontini, Yolanda Fernández-Jalvo, Eufrasia Roselló-Izquierdo, María Dolores Pesquero-Fernández: Conceptualization; data curation; formal analysis; funding acquisition; investigation; methodology; writing—original draft, review, editing. Alicia Hernández and Liliana García: Data curation, formal analysis.

Corresponding author

Correspondence to Romina Frontini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fishing over the Millennia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales Muñiz, A., Frontini, R., Fernández-Jalvo, Y. et al. Evaluation of size-related salmonid fish vertebrae deformation due to compression: an experimental approach. Archaeol Anthropol Sci 13, 215 (2021). https://doi.org/10.1007/s12520-021-01466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-021-01466-2

Keywords

Navigation