Skip to main content

Advertisement

Log in

High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp. and Echinoidea at Caution Bay, Southern Coastal Papua New Guinea

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The remains of shellfish dominate many coastal archaeological sites in the Pacific and provide a wealth of information about economy, culture, environment and climate. Shells are therefore the logical sample type to develop local and regional radiocarbon chronologies. The calibration of radiocarbon (14C) dates on marine animals is not straightforward, however, requiring an understanding of habitat and dietary preferences as well as detailed knowledge of local ocean conditions. The most complex situations occur where terrestrial influences impinge on the marine environment resulting in both the enrichment and depletion of 14C (Ulm Geoarchaeology 17(4):319–348, 2002; Petchey and Clark Quat Geochronol 6:539–549, 2011). A sampling protocol that combines a high-resolution excavation methodology, selection of short-lived samples identified to species level, and a tri-isotope approach using 14C, δ13C and δ18O, has given us the ability to identify 14C source variation that would otherwise have been obscured. Here, we present new research that details high-resolution mapping of marine 14C reservoir variation between Gafrarium tumidum, Gafrarium pectinatum, Anadara granosa, Anadara antiquata, Batissa violacea, Polymesoda erosa and Echinoidea from the Bogi 1 archaeological site, Caution Bay, southern coastal Papua New Guinea. These isotopes highlight specific dietary, habitat and behavioural variations that are key to obtaining chronological information from shell radiocarbon determinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Hardwaters occur where large amounts of bicarbonate ions, generated by seepage through calcareous strata, result in excessively old 14C ages.

  2. Morton (1988:110–111) differentiates juveniles as being ≤30 mm, while Gimin et al. (2005) put sexual maturity at 45 mm length.

  3. Analysis by Honkoop et al. (2008) showed that much of the organic material in seagrass areas originates from decayed seagrass and algae-derived products.

References

  • Afiati N (1994) The ecology of two intertidal blood clams: Anadara granosa (L.) and Anadara antiquata (L.) (Bivalvia: Arcidae) in central Java, Indonesia. PhD thesis, University of Wales, Bangor.

  • Afiati N (2007) Gonad maturation of two intertidal blood clams: Anadara granosa (L.) and Anadara antiquata (L.) (Bivalvia: Arcidae) in central Java. J Coast Dev 10(2):105–113

    Google Scholar 

  • Allen MS (2006) New ideas about late Holocene climate variability in the central Pacific. Curr Anthropol 47(3):521–535

    Article  Google Scholar 

  • Anderson A, Higham TGF, Wallace R (2001) The radiocarbon chronology of the Norfolk Island archaeological sites. Rec Aust Mus (Supplement) 27:33–42

    Article  Google Scholar 

  • Ascough PL, Cook GT, Dugmore AJ, Scott EM, Freeman SPHT (2005) Influence of mollusk species on marine ∆R determinations. Radiocarbon 47(3):433–440

    Google Scholar 

  • Baron J, Clavier J (1992) Effects of environmental factors on the distribution of the edible bivalves Atactodea striata, Gafrarium tumidum and Anadara scapha on the coast of New Caledonia (SW Pacific). Aquat Living Resour 5:107–114

    Article  Google Scholar 

  • Broom MJ (1982) Structure and seasonality in a Malaysian mudflat community. Estuarine Coastal Shelf Sci 15:135–150

    Article  Google Scholar 

  • Broom MJ (1985) The biology and culture of marine bivalve molluscs of the genus Anadara. In: ICLARM Studies and Reviews. International Center for Living Aquatic Resources Management, Manila, Volume 12

    Google Scholar 

  • Burr GS, Beck JW, Taylor FW, Recy J, Edwards RL, Cabioch G, Correge T, Donahue DJ, O'Malley JM (1998) A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from Th-230 ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40:1093–1105

    Google Scholar 

  • Burr GS, Beck JW, Correge T, Cabioch G, Taylor FW, Donahue DJ (2009) Modern and Pleistocene reservoir ages inferred from south Pacific corals. Radiocarbon 51:319–335

    Google Scholar 

  • Clark C, Reepmeyer C (2012) Last millennium climate change in the occupation and abandonment of Palau's Rock Islands. Archaeol Ocean 47:29–38

    Google Scholar 

  • Claassen C (1998) Shells. Cambridge University Press, Cambridge

    Google Scholar 

  • Clemente S, Ingole B (2011) Recruitment of mud clam Polymesoda erosa (Solander, 1876) in a mangrove habitat of Chorao Island, Goa. Braz J Oceanogr 59(2):153–162

    Google Scholar 

  • Coffey Natural Systems (2009) PNG LNG Project. Environmental Impact Statement. Coffey Natural Systems Pty Ltd, Abbotsford, VIC 3067, Australia.

  • Cook GT, MacKenzie AB, Muir GKP, Mackie G, Gulliver P (2004) Sellafield-derived anthropogenic 14C in the marine intertidal environment of the NE Irish Sea. Radiocarbon 46(2):877–883

    Google Scholar 

  • Culleton BJ, Kennett DJ, Ingram BL, Erlandson JM, Southon JR (2006) Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387–400

    Google Scholar 

  • Dettman DL, Flessa KW, Roopnarine PD, Schöne BR, Goodwin DH (2004) The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado River discharge. Geochim Cosmochim Acta 68(6):1253–1263

    Article  Google Scholar 

  • Dye T (1994) Apparent ages of marine shells: implications for archaeological dating in Hawai’i. Radiocarbon 36(1):51–57

    Google Scholar 

  • Follo J, Fautin D (2001) "Echinoidea" (On-line), Animal Diversity Web. http://animaldiversity.ummz.umich.edu/site/accounts/information/Echinoidea.html. Accessed 25 January 2012.

  • Forman SL, Polyak L (1997) Radiocarbon content of pre-bomb marine mollusks and variations in the 14C reservoir for coastal areas of the Barents and Kara seas, Russia. Geophys Res Lett 24:885–888

    Article  Google Scholar 

  • Friedman GM (1959) Identification of carbonate minerals by staining methods. J Sediment Petrol 29(1):87–97

    Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Ann Rev Earth Planet Sci 24:225–262

    Article  Google Scholar 

  • Gimin R, Thinh L, Mohan R, Griffiths AD (2005) Aspects of the reproductive biology of Polymesoda erosa (Solander, 1786) (Bivalvia: Corbiculidae) in Northern Australia. Beagle Rec Mus Art Gall North Territ 21:37–46

    Google Scholar 

  • Goewert A, Surge D, Carpenter SJ, Downing J (2007) Oxygen and carbon isotope ratios of Lampsilis cardium (Unionidae) from two streams in agricultural watersheds of Iowa, USA. Palaeogeogr Palaeoclimatol Palaeoecol 252:637–648

    Article  Google Scholar 

  • Guilderson TP, Schrag DP, Goddard E, Kashgarian M, Wellington GM, Linsley BK (2000) Southwest subtropical Pacific surface water radiocarbon in a high-resolution coral record. Radiocarbon 42:249–256

    Google Scholar 

  • Guilderson TP, Schrag DP, Cane MA (2004) Surface water mixing in the Solomon Sea as documented by a high-resolution coral 14C record. J Clim 17:1147–1156

    Article  Google Scholar 

  • Haberle SG, David B (2004) Climates of change: human dimensions of Holocene environmental change in low latitudes of the PEPII transect. Quat Int 118–119:165–179

    Article  Google Scholar 

  • Hogg AG, Higham TFG, Dahm J (1998) 14C dating of modern marine and estuarine shellfish. Radiocarbon 40(2):975–984

    Google Scholar 

  • Honkoop PJC, Berghuis EM, Holthuijsen S, Lavaleye MSS, Piersma T (2008) Molluscan assemblages of seagrass-covered and bare intertidal flats on the Banc d’Arguin, Mauritania, in relation to characteristics of sediment and organic matter. J Sea Res 60:255–263

    Article  Google Scholar 

  • Ingram BL, Southon JR (1996) Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):573–582

    Google Scholar 

  • Jones M, Petchey F, Green R, Sheppard P, Phelan M (2007) The marine ∆R for Nenumbo (Solomon Islands): a case study in calculating reservoir offsets from paired sample data. Radiocarbon 49(1):95–102

    Google Scholar 

  • Keith ML, Anderson GM, Eichler R (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim Cosmochim Acta 28:1757–1786

    Article  Google Scholar 

  • LeGrande AN, Schmidt GA (2006) Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett 33. doi:10.1029/ 2006GL026011

  • Lim CF (1966) A comparative study of the ciliary feeding mechanisms of Anadara species from different habitats. Biological Bullitin. Woods Hole Oceanographic Institute 130:106–117

    Google Scholar 

  • Mabbutt JA (1965) Geomorphology of the Port Moresby-Kairuku area. In: Mabbutt JA, Heyligers PC, Scott RM, Speight JG, Fitzpatrick EA, McAlpine JR, Pullen R (eds) Lands of the Port Moresby–Kairuku area, territory of Papua and New Guinea. CSIRO Land Research Series No. 14. Melbourne, pp 104–128.

  • Mangerud J, Bondevik S, Gulliksen S, Hufthammer AK, Høisæter T (2006) Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quat Sci Rev 25:3228–3245

    Article  Google Scholar 

  • McGregor HV, Gagan MK, McCulloch MT, Hodge E, Mortimer G (2008) Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea. Quat Geochronol 3:213–225

    Article  Google Scholar 

  • McKinnon H (1999) Investigation of a hard water effect at Aotea Harbour, North Island, New Zealand. MSc dissertation, University of Waikato.

  • McNiven IJ, David B, Richards T, Alpin K, Asmussen B, Mialanes J, Leavesley M, Faulkner P, Ulm S (2011) New direction in human colonisation of the Pacific. Aust Archaeol 72:1–6

    Google Scholar 

  • Morton B (1988) The population structure and age of Polymesoda erosa Bivalvia Corbiculacea from a Hong Kong mangrove. Asian Mar Biol 5:107–114

    Google Scholar 

  • Nunn PD (2007) Climate, environment and society in the Pacific during the last millennium. Elsevier, Amsterdam

    Google Scholar 

  • Petchey F (2009) Dating marine shell in Oceania: issues and prospects. In: Fairbairn A, O'Connor S, Marwick B (eds) New Directions in Archaeological Science. Terra Australis 28:157–172.

  • Petchey F, Addison D (2008) Radiocarbon dating marine shell in Samoa—A review. In: Addison DJ, Asaua TS, Sand C (eds) Recent advances in the Archaeology of the Fiji/West-Polynesia Region. University of Otago Studies in Prehistoric Anthropology, No. 21, Dunedin, pp 79–86.

  • Petchey F, Clark G (2011) Tongatapu hardwater: investigation into the 14C marine reservoir offset in lagoon, reef and open ocean environments of a limestone island. Quat Geochronol 6:539–549

    Article  Google Scholar 

  • Petchey F, Ulm S (2012) Marine reservoir variation in the Bismarck region: an evaluation of spatial and temporal variation in ∆R and R over the last 3000 years. Radiocarbon 54(1):145–158

    Article  Google Scholar 

  • Petchey F, Phelan M, White P (2004) New ∆R values for the southwest Pacific Ocean. Radiocarbon 46:1005–1014

    Google Scholar 

  • Petchey F, Green R, Jones M, Phelan M (2005) A local marine reservoir correction value (ΔR) for Watom Island, Papua New Guinea. N Z J Archaeol 26:29–40

    Google Scholar 

  • Petchey F, Anderson A, Zondervan A, Ulm S, Hogg A (2008a) New marine ∆R values for the South Pacific subtropical gyre region. Radiocarbon 50(3):373–397

    Google Scholar 

  • Petchey F, Anderson A, Hogg A, Zondervan A (2008b) The marine reservoir effect in the Southern Ocean: an evaluation of extant and new ΔR values and their application to archaeological chronologies. J R Soc N Z 38(4):243–262

    Article  Google Scholar 

  • Poutiers JM (1998) Bivalves. Acephala, Lamellibranchia, Pelecypoda. In: Carpenter KE, Niem VH (1998) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 1. Seaweeds, corals, bivalves, and gastropods. FAO, Rome, pp 123–362.

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–1150

    Google Scholar 

  • Sabatier P, Dezileau L, Blanchemanche P, Siani G, Condomines M, Bentaleb I, Piquès G (2010) Holocene variations of radiocarbon reservoir ages in a Mediterranean lagoonal system. Radiocarbon 52(1):91–102

    Google Scholar 

  • Sikes EL, Samson CR, Guilderson TP, Howard WR (2000) Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405:555–559

    Article  Google Scholar 

  • Snelgrove PVR, Butman CA (1994) Animal-sediment relationships revisited: cause versus effect. Oceanogr Mar Biol Annu Rev 32:111–177

    Google Scholar 

  • Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WW-S (2002) Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1):167–180

    Google Scholar 

  • Speight JG (1965) Geology of the Port Moresby-Kairuku area. In: Mabbutt JA, Heyligers PC, Scott RM, Speight JG, Fitzpatrick EA, McAlpine JR, Pullen R (eds) Lands of the Port Moresby–Kairuku area, territory of Papua and New Guinea. CSIRO Land Research Series No. 14, Melbourne, pp. 96–105.

  • Stuiver M, Braziunas TF (1993) Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–189

    Google Scholar 

  • Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1151

    Google Scholar 

  • Swart PK, Wilson AF, Jell JS (1983) Oxygen isotope variation on a lagoonal platform reef, Heron Island, Great Barrier Reef. Aust J Mar Freshwat Res 34:813–819

    Article  Google Scholar 

  • Tagliabue A, Bopp L (2008) Towards understanding global variability in ocean carbon-13. Global Biogeochem Cycles 22. doi:10.1029/2007GB003037

  • Tanaka N, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320:520–523

    Article  Google Scholar 

  • Tebano T, Paulay G (2000) Variable recruitment and changing environments create a fluctuating resource: the biology of Anadara uropigmelana (Bivalvia: Arcidae) on Tarawa Atoll. Atoll Research Bulletin 488. National Museum of Natural History Smithsonian Institution, Washington DC, pp.1-5.

  • Ulm S (2002) Marine and estuarine reservoir effects in central Queensland, Australia: determination of ΔR values. Geoarchaeology 17(4):319–348

    Article  Google Scholar 

  • Ulm S (2006) Australian marine reservoir effects: a guide to DeltaR values. Aust Archaeol 63:57–60

    Google Scholar 

  • Ulm S, Barham AJ, David B, Jacobsen G, McNiven IJ, Petchey F, Rowland MJ (2007) Marine carbon reservoir variability in Torres Strait: preliminary results of AMS dating of live-collected shell specimens. Abstracts from XVII INQUA Congress (Cairns, Australia, 28 July–3 August 2007). Quat Int 167–168:426

    Google Scholar 

  • Ulm S, Petchey F, Ross A (2009a) Marine reservoir corrections for Moreton Bay, Australia. Archaeol Ocean 44(3):160–166

    Google Scholar 

  • Ulm S, Barham AJ, David B, Jacobsen G, Loch I, McNiven IJ, Petchey F, Rowland MJ (2009b) Marine carbon reservoir variability in Torres Strait, Stage II. AINSE Progress Report www.ainse.edu.au/_data/assets/pdf_file/0009/47349/r_08063.pdf

  • Watanabe H, Hata H, Kudo S, Nozaki K, Kato K, Negishi A, Ikeda Y, Yamano H (2006) Analysis of the seawater CO2 system in the barrier reef-lagoon system of Palau using total alkalinity-dissolved inorganic carbon diagrams. Limnol Oceanogr 51:1614–1628

    Article  Google Scholar 

  • Weber JN, Woodhead PMJ (1971) Diurnal variations in the isotopic composition of dissolved inorganic carbon in seawater from coral reef environments. Geochim Cosmochim Acta 35:891–902

    Article  Google Scholar 

  • Woolfe KJ, Larcombe P, Whitmore G (1997) The marine geology of the western Gulf of Papua, with special reference to the route of a proposed gas pipeline. Report to NSR Environmental Consultants Pty. Ltd.

  • Yu K, Hua Q, Zhao J-X, Hodge E, Fink D, Barbetti M (2010) Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals in the South China Sea. Paleoceanography 25. doi:10.1029/2009PA001831

Download references

Acknowledgments

We wish to thank: Thomas Samson for ethnographic information. Mr Sese Kevau, Mr Vagi Daure, Ms Daro Daroa for their expertise in local shellfish information. BD thanks the Australian Research Council for grant and QEII Fellowship DP0877782. SU is the recipient of an Australian Research Council Future Fellowship (project number FT120100656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Petchey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petchey, F., Ulm, S., David, B. et al. High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp. and Echinoidea at Caution Bay, Southern Coastal Papua New Guinea. Archaeol Anthropol Sci 5, 69–80 (2013). https://doi.org/10.1007/s12520-012-0108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-012-0108-1

Keywords

Navigation