Skip to main content
Log in

Post-event surface deformation of Amyntaio slide (Greece) by complementary analysis of Remotely Piloted Airborne System imagery and SAR interferometry

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

The results of structure from motion photogrammetry and SAR interferometry as complementary techniques for measuring ground deformation induced by the massive open-pit landslide in Amyntaio, Greece (June 10, 2017), is presented in this paper. This unexpected slide damaged the entire westernmost marginal area of the pit, significant number of buildings, and infrastructures of the nearby village of Anargiri. The described methodology includes the generation of a multi-temporal dataset (from Sept. 2017 to Sept. 2018) of very high-resolution surface topography (at 10 cm), based on the analysis of imagery collected by Remotely Piloted Airborne Systems (RPASs). Satellite observations involved interferometric processing of TerraSAR-X data for a complementary estimation of ground displacement rates. Height differences from consecutive aerial photography campaigns as well as space-borne measurements provided valuable information on the evolution of the deformation and its spatial characteristics during the post-event period, an important aspect for future hazard and risk considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agisoft, (2016). Agisoft photoscan user manual: professional edition (v.1.2), Retrieved 23/7/2016, http://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf.

  • Anastopoulos J, Koukouzas N (1972) Economic geology of the southern part of the Ptolemais lignite basin (Macedonia, Greece). Geol Geophys Res 16:1–189 (in Greek)

    Google Scholar 

  • Aslan G, Foumelis M, Raucoules D, De Michele M, Bernardie S, Cakir Z (2020) Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps. Remote Sens 12:1305. https://doi.org/10.3390/rs12081305

    Article  Google Scholar 

  • Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri L, Lu P (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning: geoenvironmental. Disasters 4(1):9

    Google Scholar 

  • Chen F, Wu Y, Zhang Y, Parcharidis I, Ma P, Xiao R, Xu J, Zhou W, Tang P, Foumelis M (2017) Surface motion and structural instability monitoring of Ming dynasty city walls by two-step tomo-PSInSAR approach in Nanjing City. China Remote Sens 9:371. https://doi.org/10.3390/rs9040371

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2015) Persistent scatterer interferometry: a review ISPRS. J Photogramm Remote Sens 115:78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011

    Article  Google Scholar 

  • Crosetto M, Solari L, Mróz M, Balasis-Levinsen J, Casagli N, Frei M, Oyen A, Moldestad DA, Bateson L, Guerrieri L, Comerci V, Andersen HS (2020) The evolution of wide-area. DInSAR 12(12):2043. https://doi.org/10.3390/rs12122043

    Article  Google Scholar 

  • Del Soldato M, Solari L, Poggi F, Raspini F, Tomás R, Fanti R, Casagli N (2019) Landslide-induced damage probability estimation coupling. InSAR and field survey data by fragility curves. Remote Sens 11(12):1486

    Article  Google Scholar 

  • Delogkos E, Manzocchi T, Childs C, Sachanidis C, Barbas T, Schöpfer MPJ, Chatzipetros A, Pavlides S, Walsh JJ (2017) Throw partitioning across normal fault zones in the Ptolemais Basin, Greece, vol 439. Geological Society, London, Special Publications, pp 333–353. https://doi.org/10.1144/sp439.19

    Book  Google Scholar 

  • Tapete D, Cigna F (2017) InSAR data for geohazard assessment in UNESCO World Heritage sites: state-of-the-art and perspectives in the Copernicus era. Int J Appl Earth Obs Geoinf 63:24–32. https://doi.org/10.1016/j.jag.2017.07.007

    Article  Google Scholar 

  • Fiorucci F, Giordan D, Santangelo M, Dutto F, Rossi M, Guzzetti F (2018) Criteria for the optimal selection of remote sensing optical images to map event landslides. Nat Hazards Earth Syst Sci 18:405–417. https://doi.org/10.5194/nhess-18-405-2018

    Article  Google Scholar 

  • Fonstad M, Dietrich J, Courville B, Jensen J, Carbonneau P (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landf 38:421–430. https://doi.org/10.1002/esp.3366

    Article  Google Scholar 

  • Foumelis M, Papageorgiou E, Stamatopoulos C (2016) Episodic ground deformation signals in Thessaly Plain (Greece) revealed by data mining of SAR interferometry time series. Int J Remote Sens 37:3696–3711. https://doi.org/10.1080/01431161.2016.1201233

    Article  Google Scholar 

  • Foumelis M, Papadopoulou T, Bally P, Pacini F, Provost P, Patruno J (2019a) Monitoring geohazards using on-demand and systematic services on ESA’s geohazards exploitation platform IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019) Yokohama Japan 28 July - 2 August doi: https://doi.org/10.1109/IGARSS.2019.8898304

  • Foumelis M, Raucoules D, Colas B, Michele MD (2019b) On the effect of interferometric pairs selection for measuring fast moving landslides. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July-2 Aug. 2019 2019. pp 9614-9617. doi:https://doi.org/10.1109/IGARSS.2019.8900566

  • Fugazza D et al (2018) Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards. Nat Hazards Earth Syst Sci 18:1055–1071. https://doi.org/10.5194/nhess-18-1055-2018

    Article  Google Scholar 

  • Giordan D, Hayakawa Y, Nex F, Remondino F, Tarolli P (2018) Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat Hazards Earth Syst Sci 18:1079–1096. https://doi.org/10.5194/nhess-18-1079-2018

    Article  Google Scholar 

  • Granshaw SI (2018) Structure from motion: origins and originality. Photogramm Rec 33:6–10. https://doi.org/10.1111/phor.12237

    Article  Google Scholar 

  • Hanssen RF (2005) Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. Int J Appl Earth Obs Geoinf 6(3–4):253–260

    Article  Google Scholar 

  • Ho Tong Minh D, Hanssen R, Rocca F (2020) Radar interferometry: 20 years of development in time series techniques and future perspectives. Remote Sens 12(9):1364. https://doi.org/10.3390/rs12091364

    Article  Google Scholar 

  • Lanari R, Bonano M, Casu F, De Luca C, Manunta M, Manzo M, Onorato G, Zinno I (2020) Automatic generation of sentinel-1 continental scale DInSAR deformation time series through an extended P-SBAS processing pipeline in a cloud computing environment. Remote Sens 2(18):2961. https://doi.org/10.3390/rs12182961

    Article  Google Scholar 

  • Le Cozannet G, Kervyn M, Russo S, Speranza I, Ferrier P, Foumelis M, Lopez T, Modaressi H (2020) Space-based earth observations for disaster risk management. Surv Geophys 41:1209–1235. https://doi.org/10.1007/s10712-020-09586-5

    Article  Google Scholar 

  • Kang Y, Zhao C, Zhang Q, Lu Z, Li B (2017) Application of InSAR techniques to an analysis of the Guanling landslide. Remote Sens 9(10):1046

    Article  Google Scholar 

  • Karantanellis E, Marinos V, Vassilakis E (2019) 3D hazard analysis and object-based characterization of landslide motion mechanism using UAV imagery. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-2/W13:425–430. https://doi.org/10.5194/isprs-archives-XLII-2-W13-425-2019

    Article  Google Scholar 

  • Liu C-C, Chen P-L, Matsuo T, Chen C-Y (2015) Rapidly responding to landslides and debris flow events using a low-cost unmanned aerial vehicle. APPRES 9:1–18. https://doi.org/10.1117/1.JRS.9.096016

    Article  Google Scholar 

  • Lucieer A, Jong SM d, Turner D (2014) Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Prog Phys Geograp Earth Environ 38(1):97–116

    Article  Google Scholar 

  • Mancini F, Dubbini M, Gattelli M, Stecchi F, Fabbri S, Gabbianelli G (2013) Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments. Remote Sens 5:6880. https://doi.org/10.3390/rs5126880

    Article  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364(6433):138–142

    Article  Google Scholar 

  • Mateos RM, Azañón JM, Roldán FJ, Notti D, Pérez-Peña V, Galve JP, Pérez-García JL, Colomo CM, Gómez-López JM, Montserrat O, Devantèry N, Lamas-Fernández F, Fernández-Chacón F (2017) The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides 14(2):743–754

    Article  Google Scholar 

  • Meng, Q., Li, W., Raspini, F., Xu, Q., Peng, Y., Ju, Y., Zheng, Y., and Casagli, N., 2020, Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: a case study in Hongheyan, Gansu Province, Northwest China: Landslides.

    Google Scholar 

  • Mercier JL, Sorel D, Vergely P, Simeakis K (1989) Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res 2:49–71. https://doi.org/10.1111/j.1365-2117.1989.tb00026.x

    Article  Google Scholar 

  • Morishita Y, Lazecky M, Wright TJ, Weiss JR, Elliott JR, Hooper A (2020) LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor. Remote Sens 12(3):424. https://doi.org/10.3390/rs12030424

    Article  Google Scholar 

  • Navarro JA, Tomás R, Barra A, Pagán JI, Reyes-Carmona C, Solari L, Vinielles JL, Falco S, Crosetto M (2020) ADAtools: Automatic Detection and Classification of Active Deformation Areas from PSI Displacement Maps. ISPRS Int J Geo Inf 9. https://doi.org/10.3390/ijgi9100584

  • Niethammer U, Rothmund S, Schwaderer U, Zeman J, Joswig M (2011) Open source image-processing tools for low-cost UAV-based landslide investigations. Int Arch Photogramm Remote Sens Spat Inf Sci 38(1/C22):1–6

    Google Scholar 

  • Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the super-sauze landslide: evaluation and results. Eng Geol 128:2–11. https://doi.org/10.1016/j.enggeo.2011.03.012

    Article  Google Scholar 

  • Papageorgiou E, Foumelis M, Trasatti E, Ventura G, Raucoules D, Mouratidis A (2019) Multi-Sensor SAR Geodetic Imaging and Modelling of Santorini Volcano Post-Unrest Response. Remote Sens 11:259. https://doi.org/10.3390/rs11030259

    Article  Google Scholar 

  • Parcharidis I, Lagios E, Sakkas V, Raucoules D, Feurer D, Le Mouelic S, King C, Carnec C, Novali F, Ferretti A, Capes R, Cooksley G (2006) Subsidence monitoring within the Athens Basin (Greece) using space radar interferometric techniques. Earth Planets Space J 58:505–513

    Article  Google Scholar 

  • Pavlides SB, Mountrakis DM (1987) Extensional tectonics of northwestern Macedonia, Greece, since the late. Miocene J Struct Geol 9:385–392. https://doi.org/10.1016/0191-8141(87)90115-5

    Article  Google Scholar 

  • Pepe M, Fregonese L, Scaioni M (2018) Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. Euro J Remote Sens 51:412–436. https://doi.org/10.1080/22797254.2018.1444945

    Article  Google Scholar 

  • Raucoules D, Foumelis M, Negulescu C, Michele MD, Aunay B, Tomaro F (2018) Landslide observation from ALOS-2/PALSAR-2 Data (Image Correlation Techniques and Sar Interferometry). Application to Salazie circle landslides (La Reunion Island). In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 22-27 July 2018, pp 506–509. https://doi.org/10.1109/IGARSS.2018.8517998

    Chapter  Google Scholar 

  • Rosen P, Werner C, Fielding E, Hensley S, Buckley S, Vincent P (1998) Aseismic creep along the San Andreas fault northwest of Parkfield, CA measured by radar interferometry. Geophys Res Lett 25:825–828

    Article  Google Scholar 

  • Rossi G, Tanteri L, Tofani V, Vannocci P, Moretti S, Casagli N (2018) Multitemporal UAV surveys for landslide mapping and characterization. Landslides 15(5):1045–1052

    Article  Google Scholar 

  • Steenbrink J, van Vugt N, Hilgen FJ, Wijbrans JR, Meulenkamp JE (1999) Sedimentary cycles and volcanic ash beds in the Lower Pliocene lacustrine succession of Ptolemais (NW Greece): discrepancy between 40Ar/39Ar and astronomical ages. Palaeogeogr Palaeoclimatol Palaeoecol 152:283–303. https://doi.org/10.1016/S0031-0182(99)00044-9

    Article  Google Scholar 

  • Turner D, Lucieer A, De Jong SM (2015) Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens 7(2):1736–1757

    Article  Google Scholar 

  • Vassilakis, E., Foumelis, M., Erkeki, A., Kotsi, E., Parcharidis, I., and Lekkas, E., 2019, Multitemporal surface deformation analysis of Amyntaio slide (Greece) using remotely piloted airborne system and structure-from-motion photogrammetry., 4th Joint International Symposium on Deformation Monitoring: Athens, p. 5p.

  • Wegnüller U, Werner C, Strozzi T, Wiesmann A, Frey O, Santoro M (2016) Sentinel-1 support in the GAMMA Software. Proc Compu Sci 100:1305–1312. https://doi.org/10.1016/j.procs.2016.09.246

    Article  Google Scholar 

  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

  • Xie M, Zhao W, Ju N, He C, Huang H, Cui Q (2020) Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan, China. Eng Geol 277:105781

    Article  Google Scholar 

  • Zebker HA, Rosen PA, Goldstein RM, Gabriel A, Werner CL (1994) On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J Geophys Res 99:19617–19634

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thankfulness to the anonymous reviewers that spent valuable time to improve significantly the manuscript and the Guest Editor Professor Vassilis Gikas for organizing the current issue. TerraSAR-X/TanDEM-X data were provided by the European Space Agency within the Earthnet TPM research project ID 38913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Vassilakis.

Supplementary information

(MP4 7178 kb)

ESM 2

(JPG 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassilakis, E., Foumelis, M., Erkeki, A. et al. Post-event surface deformation of Amyntaio slide (Greece) by complementary analysis of Remotely Piloted Airborne System imagery and SAR interferometry. Appl Geomat 13 (Suppl 1), 65–75 (2021). https://doi.org/10.1007/s12518-020-00347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-020-00347-y

Keywords

Navigation