Skip to main content
Log in

Geochemistry and paleoweathering of metasediments and pyrite-bearing quartzite during the Neoproterozoic Era, Wadi Ibib-Wadi Suwawrib, South Eastern Desert, Egypt

  • S. I. SCJGE-1 2019
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This contribution focuses on new geological and geochemical investigations of Wadi Ibib (WI)-Wadi Suwawrib (WS) metasediments and pyrite-bearing quartzites to deduce the paleoweathering, paleoclimatology processes, sources, and provenances of their old sediments. Variable weathering indexes such as the chemical alteration index (CIA) and chemical index of weathering (CIW) as well as the plagioclase alteration index (PIA) reflect a mild-medium chemical-weathering effect. Furthermore, variation in climate increases the opportunity for chemical weathering. The studied metasediments are enriched in major (with expectation of SiO2), trace, and rare earth elements (REEs) relative to quartzite. The steep slope of LREEs is clear in the studied metasediments and quartzite (La/Sm av. = 1.8, 3.07, respectively) and weakly fractionated of HREEs for both (Gd/Yb av. = 1.3, 0.28, respectively). A strong negative Eu anomaly (Eu/Eu* = 0.1–0.4; 0.26 in average) was obviously recorded in the examined quartzite and shallower in metasediments (Eu/Eu*= 0.2–0.9; 0.53). The latter contain Eu/Eu* values akin to Egyptian metasediments, Proterozoic greywackes, Post-Archean Australian shale (PAAs), and upper continental crust (UCC). The SiO2/Al2O3 ratio ranges from 7.73 to 9.32 (av. 8.5) for quartzite, suggesting sedimentary maturation, while metasediments (3.28–4.59) are immature. Variable discrimination diagrams reveal that the WI-WS metasediments deposited in continental arc setting may be back-arc comparable with Egyptian metasediments, whereas the examined quartzite was developed in passive margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The present authors declare that the work data and materials are available.

References

  • Abd El-Rahman Y, Polat A, Dilek Y, Fryer BJ, El-Sharkawy M, Sakran S (2009) Geochemistry and tectonic evolution of the Neoproterozoic Wadi Ghadir ophiolite, Eastern Desert. Egypt. Lithos 113:158–178. https://doi.org/10.1016/j.lithos.2008.12.014

    Article  Google Scholar 

  • Abd El-Wahed MA (2008) Thrusting and transpressional shearing in the Pan-African nappe southwest El-Sibai core complex, Central Eastern Desert. Egypt. J Afr Earth Sci 50:16–36. https://doi.org/10.1016/j.jafrearsci.2007.09.005

    Article  Google Scholar 

  • Abu El-Enen MM, Abu-Alam TS, Whitehouse MJ, Ali KA, Okrusch M (2016) P-T path and timing of crustal thickening during amalgamation of East and West Gondwana: a case study from the Hafafit Metamorphic Complex, Eastern Desert of Egypt. Lithos 263:213–238. https://doi.org/10.1016/j.lithos.2016.01.001

    Article  Google Scholar 

  • Abu El-Enen MM, Okrusch M, Will TM (2004) P-T evolution of the Taba Metamorphic belt, Egypt: constraints from the metapelite assemblages. J Afr Earth Sci 38:59–78. https://doi.org/10.1016/j.jafrearsci.2003.09.002

    Article  Google Scholar 

  • Abu El-Enen MM (2011) Geochemistry, provenance, and metamorphic evolution of Gabal Samra Neoproterozoic metapelites, Sinai. Egypt. J Afr Earth Sci 59:269–282. https://doi.org/10.1016/j.jafrearsci.2010.11.002

    Article  Google Scholar 

  • Adam MMA, Lv X, Abdel Rahman AA, Stern RJ, Abdalrhman AAA, Ullah Z (2020) In-situ sulfur isotope and trace element compositions of pyrite from the Neoproterozoic Haweit gold deposit, NE Sudan: implications for the origin and source of the sulfur. Ore Geol Rev 120:103–405. https://doi.org/10.1016/j.oregeorev.2020.103405

    Article  Google Scholar 

  • Ali KA, Stern RJ, Manton WI, Kimura JI, Khamees HA (2009) Geochemistry, Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: new insights into the 750 Ma crust-forming event. Precambrian Res 171:1–22. https://doi.org/10.1016/j.precamres.2009.03.002

    Article  Google Scholar 

  • Amstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297. https://doi.org/10.1306/082803740285

    Article  Google Scholar 

  • Andresen A, Abu El-Enen MM, Stern RT, Wilde SA, Ali KA (2014) The Wadi Zaghra metasediments of Sinai, Egypt: new constraints on the late Cryogenian-Ediacaran tectonic evolution of the northernmost Arabian-Nubian Shield. Int Geol Rev. https://doi.org/10.1080/00206814.2014.907755

    Article  Google Scholar 

  • Asiedu DK, Dampare SB, Asmoah Sakyi P, Banoeng-Yakubo B, Osae S, Nyarko BJB, Manu J (2004) Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamontiferous field, southern Ghana: implications for provenance and crustal evolution at the Archean-Proterozoic boundary. Geochem J 38:215–228. https://doi.org/10.2343/geochemj.38.215

    Article  Google Scholar 

  • Bajwah ZU, Seccombe, PK, Offler R (1987) Trace element distribution Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposit 22 (4): 292–300. https://link.springer.com/article/10.1007/BF00204522

  • Bauluz B, Mayayo MJ, Fernandez-Nieto C, Lopez JMG (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150. https://doi.org/10.1016/S0009-2541(00)00192-3

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91: 611– 627. https://www.jstor.org/stable/30064711

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral Petrol 92: 181–193. https://link.springer.com/article/10.1007/BF00375292

  • Bierlein FP, Reynolds N, Arne D, Bargmann C, McKeag S, Bullen W (2016) Petrogenesis of a Neoproterozoic magmatic arc hosting porphyry Cu-Au mineralization at Jebel Ohier in the Gebeit Terrane, NE Sudan. Ore Geol Rev 79:133–154. https://doi.org/10.1016/j.oregeorev.2016.05.010

    Article  Google Scholar 

  • Bralia A, Sabatini G, Troja F (1979) A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineral Deposit 14: 353–374. https://link.springer.com/article/10.1007/BF00206365

  • Breitkreuz C, Eliwa H, Khalaf I, El-Gameel K, Buhler B, Sergeev S, Larionov A, Murata M (2010) Neoproterozoic SHRIMP U-Pb zircon ages of silica-rich Dokhan Volcanics in the North Eastern Desert. Egypt. Precambrian Res 182(3):163–174. https://doi.org/10.1016/j.precamres.2010.06.019

    Article  Google Scholar 

  • Carstens CW (1941) Om geokjemiske undersøkelser av malmer. Norsk Geol Tids 21:213–221

    Google Scholar 

  • Clark C, Grguric B, Mumm AS (2004) Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia. Ore Geol Rev 25(3):237–257. https://doi.org/10.1016/j.oregeorev.2004.04.003

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37. https://doi.org/10.1016/0009-2541(93)90140-E

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Mao J (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem Geol 264:101–121. https://doi.org/10.1016/j.chemgeo.2009.02.020

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cmochim Acta 9:2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, U.S.A.: implications for provenance and metamorphic studies. Lithos 51:305–327. https://doi.org/10.1016/S0024-4937(99)00063-8

    Article  Google Scholar 

  • Cullers RL, Bock B, Guidotti C (1997) Elemental distribution and neodymium isotopic compositions of Silurian metasediments, western Maine, USA: redistribution of the rare earth elements. Geochim Cosmochim Acta 61:1847–1861. https://doi.org/10.1016/S0016-7037(97)00048-3

    Article  Google Scholar 

  • Cullers RL, Podkovyrov VN (2002) The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, south-eastern Russia. Precambrian Res 117:157–183. https://doi.org/10.1016/S0301-9268(00)00090-5

    Article  Google Scholar 

  • Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42(1):32–46. https://doi.org/10.1016/j.oregeorev.2011.03.003

    Article  Google Scholar 

  • Dey S, Nandy J, Choudhary AK, Liu Y, Zong K (2014) Origin and evolution of granitoids associated with the Kadiri greenstone belt, eastern Dharwar craton: a history of orogenic to an orogenic magmatism. Precambrian Res 246:64–90. https://doi.org/10.1016/j.precamres.2014.02.007

    Article  Google Scholar 

  • El Bahariya G (2018) Geology, geochemistry, and source characteristics of Neoproterozoic arc-related clastic metasediments, Central Eastern Desert. Egypt. Arab J Geosci 11:87. https://doi.org/10.1007/s12517-018-3427-4

    Article  Google Scholar 

  • El Mezayen AM, Heikal MA, El-Feky MG, Shahin HM, Abu Zeid IK, Lasheen SR (2018) Ultramafic hosting talc, chromite and uranium-bearing magnesite of Sol Hamed ophiolites South Eastern Desert, Egypt; petrology, geochemistry and tectonic evolution. Annals Geol Surv Egypt XXXV 71 – 96.

  • El-Bialy MZ (2013) Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zariq formations, Kid metamorphic complex, Sinai, Egypt: implications for source-area weathering, provenance, recycling, and depositional tectonic setting. Lithos 175–176:68–85. https://doi.org/10.1016/j.lithos.2013.05.002

    Article  Google Scholar 

  • Fawzy M M, Kamar M S, Saleh G M (2021) Physical processing for polymetallic mineralization of Abu Rusheid mylonitic rocks, South Eastern Desert of Egypt. Inter Rev Appl Sci Engin. DOI: 10.1556/1848.2021.00200

  • Fedo CM, Nesbitt HM, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geol 23:921–924. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO;2

  • Fisher RV (1961) Proposed classification of volcanic sediments and rocks. Geol Soc Am Bull 72:1409–1414

    Article  Google Scholar 

  • Fisher RV (1984) Submarine volcaniclastic rocks. Marginal basin geology: volcanic and associated sedimentary and tectonic processes in modern and ancient marginal basins. Kokelaar, B.P., Howells, M.F. (Eds.) Geol Soc Lond Spec Publ 16: 5–27.

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Geol Soc Lond 144:531–542. https://doi.org/10.1144/gsjgs.144.4.0531

    Article  Google Scholar 

  • Floyd PA, Winchester JA, Park RG (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch. NW Scotland Precambrian Res 45:203–214. https://doi.org/10.1016/0301-9268(89)90040-5

    Article  Google Scholar 

  • Gao S, Ling WL, Qiu YM, Lian Z, Hartmann G, Simon K (1999) Contrasting geochemical and Sm–Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim Cosmochim Acta 63:2071–2088. https://doi.org/10.1016/S0016-7037(99)00153-2

    Article  Google Scholar 

  • Garcia D, Fonteilles M, Moutte J (1994) Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. J Geol 102:411–422. https://doi.org/10.1086/629683

    Article  Google Scholar 

  • Ghabrial DS, Samuel MD, Moussa HE (2012) Geochemistry and tectonic setting of early Pan-African metamorphosed volcano-sedimentary sequence in southern Solaf zone SW Sinai Egypt. Arab J Geosci. https://doi.org/10.1007/s12517-012-0623-5

    Article  Google Scholar 

  • Hamdy MM, Abd El-Wahed MA, Gamal El Dien H, Morishita T (2017) Garnet hornblendite in the Meatiq core Complex, Central Eastern Desert of Egypt: implications for crustal thickening preceding the ~600 Ma extensional regime in the Arabian-Nubian Shield. Precambrian Res 298:593–614. https://doi.org/10.1016/j.precamres.2017.07.002

    Article  Google Scholar 

  • Hamimi Z, Abd El-Wahed M, Gahlan HA, Kamh SZ (2019) Tectonics of the Eastern Desert of Egypt: key to understanding the Neoproterozoic evolution of the Arabian-Nubian Shield (East African Orogen). In: Bendaoud A, Hamimi Z, Hamoudi M, Djemai S, Zoheir B (eds) Geology of the Arab world-an overview, Springer Geology. Spr. Geol. 1–81. https://doi.org/10.1007/978-3-319-96794-31

  • Harnois L (1988) The CIW index: a new chemical index of weathering. Sediment Geol 55:319–322. https://doi.org/10.1016/0037-0738(88)90137-6

    Article  Google Scholar 

  • Hassan MA, Hashad AH (1990) Precambrian of Egypt. In: Said R (ed): The geology of Egypt. Balkema, Rotterdam, pp 201–224. https://www.worldcat.org/title/geology-of-egypt/oclc/22147433

  • Hayashi K, Fujisawa H, Holland H, Ohmoto H (1997) Geochemistry of ~1.9 Ga sedimentary rocks from Northeastern Labrador. Canada. Geochim Cosmochim Acta 61:4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7

    Article  Google Scholar 

  • Hazarika P, Mishra B, Chinnasamy S, Bernhardt HJ (2013) Multi-stage growth and invisible gold distribution in pyrite from the Kundarkocha sediment-hosted gold deposit, eastern India. Ore Geol Rev 55:134–145. https://doi.org/10.1016/j.oregeorev.2013.05.006

    Article  Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58:820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Hofmann A (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314. https://doi.org/10.1016/0012-821X(88)90132-X

    Article  Google Scholar 

  • Howard JL (2005) The quartzite problem revisited. J Geol 113(6):707–713. https://doi.org/10.1086/449328

    Article  Google Scholar 

  • Ibrahim W S, Watanabe K, Ibrahim M E, Yonezu K (2015) Neoproterozoic Tectonic Evolution of Gabal Abu Houdied Area, South Eastern Desert, Egypt: As a Part of Arabian–Nubian Shield Tectonics. Arab for Sci. Engin. 40(7), 1947-1966. https://doi.org/10.1007/s13369-014-1521-9

  • Ibrahim W S (2021) NeoproterozoicU-Th-REE-bearing Pegmatites in the WadiIbib, South Eastern Desert, Egypt: Structural and Geochemical Measures for a Syn-Tectonic Anatectic Model of Formation. Acta Geol Sinica. doi: 10.1111/1755-6724..14713

  • Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232. https://doi.org/10.1016/j.jafrearsci.2011.07.003

    Article  Google Scholar 

  • Kamar M S (2020) New Occurrence of Gold Mineralization at the Eastern Part of Wadi El Gemal, South Eastern Desert, Egypt. Open J Geol 10, 1210-1233

  • Khaleal FM, Kamar MS, El-Sherif AM (2017) Geochemistry and radioactivity of the monzogranite rocks, North Wadi Ghadir, South Eastern Desert. Egypt. Nucl Sci Scient J 6:71–91

    Google Scholar 

  • Khan T, Sarma DS, Somasekhar V, Ramanaiah S, Reddy NR (2019) Geochemistry of the Palaeoproterozoic quartzites of Lower Cuddapah Supergroup, South India: implications for the palaeoweathering, provenance, and crustal evolution. Geological J 55:1578–1611. https://doi.org/10.1002/gj.3489

    Article  Google Scholar 

  • Khudeir AA, El-Gaby S, Kamal El-Din GM, Asran AM, Greiling RO (1995) The pre-Pan-African deformed granite cycle of the Gabal El Sibai swell, Eastern Desert. Egypt. J Afr Earth Sci 21:395–406

    Article  Google Scholar 

  •  Lasheen E S R, Saleh G M, Khaleal F M, Alwetaishi M (2021a) Petrogenesis of Neoproterozoic Ultramafic Rocks, Wadi Ibib—Wadi Shani, South Eastern Desert, Egypt: Constraints from Whole Rock and Mineral Chemistry. Appl Sci 11: 10524. https://doi.org/10.3390/app112210524

  • Lasheen E S R, Rashwan M A, Osman H, Alamri S, Khandaker M U, Hanfi, M Y M (2021b) Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity. Materials 14: 7290. https://doi.org/10.3390/ma14237290

  • Li JL, Zhang YM, Gu XX, Meng FJ, Gao HJ, Wang L (2017) Geological characteristics of the Xiyi MVT-type Pb-Zn ore deposit in Yunnan and EPMA analysis of the sulfides. Geol Explor 53:23–34 (In Chinese)

    Google Scholar 

  • Liu Z, Shao Y, Zhou H, Liu N, Huang K, Liu Q, Zhang J, Wang C (2018) Major and trace element geochemistry of pyrite and pyrrhotite from stratiform and lamellar orebodies: implications for the ore genesis of the Dongguashan Copper (Gold) Deposit. Eastern China. Minerals 8:380. https://doi.org/10.3390/min8090380

    Article  Google Scholar 

  • Loizenbauer J, Wallbrecher E, Fritz H, Neumayr P, Khudeir AA, Kloetzil U (2001) Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex. Implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Res 110:357–383. https://doi.org/10.1016/S0301-9268(01)00176-0

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Naqvi SM, Mohan MR (2004) Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramagiri-Hungund composite greenstone belt. Dharwar craton. Precambr Res 134:21–39. https://doi.org/10.1016/j.precamres.2004.05.010

    Article  Google Scholar 

  • Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220:136–161. https://doi.org/10.1016/j.sedgeo.2009.04.022

    Article  Google Scholar 

  • Mao JW, Shao YJ, Xie GQ, Zhang JD, Chen YC (2009) Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposit 28:209–219 (In Chinese)

    Google Scholar 

  • Maynard JB (1992) Chemistry of modern soils as a guide to interpreting Precambrian Paleosols. J Geol 100:279–289. https://doi.org/10.1086/629632

    Article  Google Scholar 

  • Maynard JB, Sutton SJ, Robb LJ, Ferraz MF, Meyer FM (1995) A Paleosol developed on hydrothermally altered granite from the hinterland of the Witwatersrand Basin: characteristics of a source of basin fill. J Geol 103:357–377. https://doi.org/10.1086/629757

    Article  Google Scholar 

  • McLennan SM, Hemming, S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes controlling the composition of clastic sediments. Geol Soc Am Spec Paper 284: 21–40. https://doi.org/10.1130/SPE284-p21

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99: 1–22. https://www.jstor.org/stable/30068762

  • McLennan SM, Taylor SR, Kroner A (1983) Geochemical evolution of Archean shales from South Africa, I, the Swaziland and Pogola Supergroups. Precambrian Res 22:93–124. https://doi.org/10.1016/0301-9268(83)90060-8

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050. https://doi.org/10.1016/0016-7037(90)90269-Q

    Article  Google Scholar 

  • Mei JM (2000) Chemical typomorphic characteristic of pyrites from Zhilingtou gold deposit, Sichang, Zhejiang. Geosci 14: 51–55

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717. Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and

  • volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48: 1423–1534. https://doi.org/10.1016/0016-7037(84)90408-3

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97: 129–147. https://www.jstor.org/stable/30065535

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104: 525–542. https://doi.org/10.1086/629850

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone (2nd ed.) (p. 553). New York: Springer. https://www.springer.com/gp/book/9780387963501

  • Price BJ (1972) Minor elements in pyrites from the smithers map area, b.c. and exploration applications of minor element studies. Doctoral dissertation, University of British Columbia. http://hdl.handle.net/2429/33251

  • Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems? Econ Geol 111(3):743–761. https://doi.org/10.2113/econgeo.111.3.743

    Article  Google Scholar 

  • Roser BP, Cooper RA, Nathan S, Tulloch AJ (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand J Geol Geophys 39:1–16. https://doi.org/10.1080/00288306.1996.9514690

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone–mudstone suite determined using discrimination function analysis of major-element data. Chem Geol 67:119–139. https://doi.org/10.1016/0009-2541(88)90010-1

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick, R.L. (Ed.), The crust. Elsevier-Pergamon, Oxford, pp. 1–64. https://doi.org/10.1016/B0-08-0437516/03016-4

  • Saleh G M (2005) Geochemical characteristic of some mineralization in wadi Ibib—Um Rasayn—G. Madara area, South Eastern Desert, Egypt. Report PP 57

  • Shapiro L, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate rocks, U.S. Geol Surv Bull 114 A: 56.

  • Shaw DM (1968) A review of K-Rb fractionation trends by covariance analysis. Geochim Cosmochim Acta 32:573–601. https://doi.org/10.1016/0016-7037(68)90050-1

  • Singh PK, Khan MS (2017) Geochemistry of Palaeoproterozoic Rocks of Aravalli Supergroup: implications for weathering history and depositional sequence. Int. J Geosci. 8: 1278–1299. https://doi.org/10.4236/ijg.2017.810074

  • Spalletti LA, Queralt I, Matheos SD (2008) Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquen Basin, western Argentina): implications for provenance and tectonic setting. J South Am Earth Sci 25:440–463. https://doi.org/10.1016/j.jsames.2007.08.005

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annul Rev. Earth Planet Sci 22(1):319–351. https://doi.org/10.1146/annurev.ea.22.050194.001535

    Article  Google Scholar 

  • Sugitani K, Horiuchi Y, Adachi M, Sugisaki R (1996) Anomalously low Al2O3/TiO2 values for Archean cherts from the Pilbara Block. Western Australia possible evidence for extensive chemical weathering on the early earth. Precambrian Res 80:49–76. https://doi.org/10.1016/S0301-9268(96)00005-8

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In A. D. Saunder, and M. J. Norry (Eds.), Magmatism in the ocean basins, 42, 313-345. J Geol Soc, London, Special Publications. https://doi.org/10.1144/GSL.SP.1989.042.01.19

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate. I. Framework mineralogy. J Sediment Petrol 56(3):329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publishers, Oxford

    Google Scholar 

  • Voute F, Hagemann SG, Evans NJ, Villanes C (2019) Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms. Mineral Deposit 1–24.https://link.springer.com/article//10.1007/s00126-018-0857-6

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Amer Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Xu GF, Shao JL (1980) Typomorphic characteristics of pyrite and its significance. Int Geol Rev 26:541–546 (In Chinese)

    Google Scholar 

  • Xu N, Wu C, Li S, Xue B, Xiang H, Yan-long Y, Liu J (2020) LA-ICP-MS in situ analyses of the pyrites in Dongyang gold deposit Southeast China: implications to the gold mineralization. China Geol 3:230–246. https://doi.org/10.31035/cg2018123

    Article  Google Scholar 

  • Yan Y, Zhang N, Li S, Li Y (2014) Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China. Geosci. Front. 5:205–213

    Article  Google Scholar 

  • Zhang J, Deng J, Chen H, Yang L, Cooke D, Danyushevsky L, Gong Q (2014) LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: implication for ore-forming process. Gondwana Res 26:557–575. https://doi.org/10.1016/j.gr.2013.11.003

  • Zhang Y, Kusky T, Wang L, Li J, Feng P, Huang Y, Giddens R (2015) Occurrence of gold in hydrothermal pyrite, western Taupo Volcanic Zone, New Zealand. Geodinamica Acta. https://doi.org/10.1080/09853111.2015.1113024

  • Zhao HX, Frimmel HE, Jiang SY, Dai BZ (2011) LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: implications for ore genesis. Ore Geol Rev 43:142–153. https://doi.org/10.1016/j.oregeorev.2011.07.006

    Article  Google Scholar 

  • Zhou XW, Li SR, Lu L, Li JJ, Wang JZ (2005) Study of pyrite typomorphic characteristics of Wulong quartz-vein-type gold deposit in Dandong, Liaoning Province, China. Geosci 19:231–238

    Google Scholar 

  • Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology 50:1079–1104. https://doi.org/10.1046/j.1365-3091.2003.00595.x

    Article  Google Scholar 

  • Zoheir BA, Johnson PR, Goldfarb RJ, Klemm DD (2019) Orogenic gold in the Egyptian Eastern Desert: widespread gold mineralization in the late stages of Neoproterozoic orogeny. Gondwana Res 75:184–217. https://doi.org/10.1016/j.gr.2019.06.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Prof. Dr. D.R. Lentz, Department of Earth Sciences, University of New Brunswick, Fredericton, NB, Canada, for his help during the EPMA analysis and is deeply thankful to Prof. Dr. M. E. Ibrahim, NMA, Cairo, Egypt, for his assistance in the fieldwork. The authors would like to thank the guest editors and Prof. Dr. Abdullah M. Al-Amri (editor in chief) for handling the manuscript and an anonymous referee for their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

Gehad M. Saleh , Farrage M. Khalil and El Saeed R. Lasheen are contributed in conceptualization, data curation, writing and reviewing manuscript.

Corresponding author

Correspondence to El Saeed R. Lasheen.

Ethics declarations

Consent for publication

The authors have given consent for publication.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Zakaria Hamimi.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Current Advances in Geological Research of Egypt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, G.M., Khaleal, F.M. & Lasheen, E.S.R. Geochemistry and paleoweathering of metasediments and pyrite-bearing quartzite during the Neoproterozoic Era, Wadi Ibib-Wadi Suwawrib, South Eastern Desert, Egypt. Arab J Geosci 15, 51 (2022). https://doi.org/10.1007/s12517-021-09141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-09141-5

Keywords

Navigation