Skip to main content

Advertisement

Log in

Evaluation of Sentinel 1–derived and open-access digital elevation model products in mountainous areas of Western Ghats, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Digital elevation model, acquired and generated using manual field survey, stereo pairs, interferometric synthetic aperture radar (InSAR) and light detection and ranging techniques to characterize terrain topography, plays a dynamic role in geological and hydrological applications. Digital elevation models (DEMs) are subjected to comprise ineradicable faults owing to acquirement techniques and pre-processing methodologies. Experiencing non-uniform variation in accuracy, it is mandatory to assess the accuracy of DEMs before employing it for numerous purposes. Considering the fact, assessment of vertical and horizontal accuracies of open-access DEMs and InSAR-derived DEM is performed with Survey of India (SOI) toposheets as reference. Results concluded that Cartosat DEM and SRTM DEM of 30 m resolution with NRMSE as 10.5% and 10%, respectively, and PBIAS as − 0.3% and − 0.5% respectively highly correlated with the toposheet elevation when compared with other DEMs. Horizontal assessment of pixel offset concluded that Cartosat and SRTM DEM experience an offset of 0.1% along X-axis and 0.33% along Y-axis. Assessment of vertical accuracy and pixel offset concluded that CartoDEM and SRTM DEM are highly recommended for research purposes over Kodagu District, Karnataka, India. InSAR-derived DEM experiences massive variation and are not suggested over hilly terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bobtad PV, Stowe T (1994) An evaluation accuracy: of DEM elevation, slope, and aspect. Photogramm Eng Remote Sens 60:1327–1332

    Google Scholar 

  • Bolch T, Kamp U, Olsenholler J (2005) Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. New Strateg. Eur Remote Sens, Oluiþ (ed). 119–127

  • Chai T, Draxler RR (2015) Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Croneborg L, Saito K, Matera M et al (2015) Digital elevation models. Int Bank Reconstr Dev World Bank Gr 71:1–86. https://doi.org/10.1029/90EO00111

    Article  Google Scholar 

  • Das S, Patel PP, Sengupta S (2016) Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: a case study of the Supin – Upper Tons Basin , Indian Himalayas. Springerplus 5:1–38. https://doi.org/10.1186/s40064-016-3207-0

    Article  Google Scholar 

  • Datta PS, Schack-kirchner H (2010) Erosion relevant topographical parameters derived from different DEMs — a comparative study from the Indian lesser. Remote Sens 2:1941–1961. https://doi.org/10.3390/rs2081941

    Article  Google Scholar 

  • DeWitt JD, Warner TA, Chirico PG, Bergstresser SE (2017) Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering. GIScience Remote Sens 54:552–572. https://doi.org/10.1080/15481603.2017.1295514

    Article  Google Scholar 

  • Dewitt JD, Warner TA, Conley JF (2015) Comparison of DEMS derived from USGS DLG, SRTM, a statewide photogrammetry program, ASTER GDEM and LiDAR: implications for change detection. GIScience Remote Sens 52:179–197. https://doi.org/10.1080/15481603.2015.1019708

    Article  Google Scholar 

  • Elkhrachy I (2018) Vertical accuracy assessment for SRTM and ASTER digital elevation models: a case study of Najran city, Saudi Arabia. Ain Shams Eng J 9:1807–1817. https://doi.org/10.1016/j.asej.2017.01.007

    Article  Google Scholar 

  • Ferretti A, Monti-Guarnieri A, Prati C, et al (2007) InSAR principles - guidelines for SAR Interferometry Processing and Interpretation

  • Florinsky IV (1998) Accuracy of local topographic variables derived from digital elevation models. Int J Geogr Inf Sci 12:47–62

    Article  Google Scholar 

  • Gajalakshmi K, Anantharama V (2015) Comparative study of Cartosat-DEM and SRTM-DEM on elevation data and terrain elements. Int J Adv Remote Sens GIS 4:1361–1366

    Article  Google Scholar 

  • Geethapriya M, Krishnaveni D, Bahuguna IM, Venkatesh K (2018) Glacier ice surface velocity using interferometry. In: Advancements in geospatial technology for societal benefits and annual conventions of Indian Society of Geomatics & Indian Society of Remote Sensing. pp 154–155

  • Giribabu D, Kumar P, Mathew J, Sharma KP, Murthy YVNK (2013) DEM generation using Cartosat-1 stereo data: issues and complexities in Himalayan terrain. Eur J Remote Sens 46:431–443. https://doi.org/10.5721/EuJRS20134625

    Article  Google Scholar 

  • Gruber A, Wessel B, Martone M, Roth A (2016) The TanDEM-X DEM Mosaicking: fusion of multiple acquisitions using InSAR quality parameters. IEEE J Sel Top Appl Earth Obs Remote Sens 9:1047–1057. https://doi.org/10.1109/JSTARS.2015.2421879

    Article  Google Scholar 

  • Hengl T, Reuter H (2011) How accurate and usable is GDEM? A statistical assessment of GDEM using LiDAR data. Geomorphometry.org/2011 45–48

  • Hirt C, Filmer MS, Featherstone WE (2010) Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9s ver3 digital elevation models over Australia. Aust J Earth Sci 57:337–347. https://doi.org/10.1080/08120091003677553

    Article  Google Scholar 

  • Hu Z, Peng J, Hou Y, Shan J (2017) Evaluation of recently released open global digital elevation models of Hubei, China. Remote Sens 9(1):16. https://doi.org/10.3390/rs9030262

    Article  Google Scholar 

  • Isioye OA, Yang IC (2013) Comparison and validation of ASTER-GDEM and SRTM elevation models over parts of Kaduna State, Nigeria. In: SASGI Proceedings 2013 – Stream 1

  • Krishnan S, Sajikumar N, Sumam KS (2016) DEM generation using Cartosat-I stereo data and its comparison with publically available DEM. Int Conf Emerg Trends Eng Sci Technol 24:295–302. https://doi.org/10.1016/j.protcy.2016.05.039

    Article  Google Scholar 

  • Lakshmi ES, Yarrakula K (2018) Review and critical analysis on digital elevation models. Geofizika 35:1–13. https://doi.org/10.15233/gfz.2018.35.7

    Article  Google Scholar 

  • Lakshmi ES, Yarrakula K (2017) Comparative analysis of digital elevation models: a case study around Madduleru River. Indian J Geo-Mar Sci 46:1339–1351

    Google Scholar 

  • Laurencelle J, Logan T, Gens R (2015) ASF radiometrically terrain corrected ALOS PALSAR products. Product guide

  • Li P, Li Z, Muller J et al (2015) A new quality validation of global digital elevation models freely available in China. Surv Rev 36:170–189. https://doi.org/10.1179/1752270615Y.0000000039

    Article  Google Scholar 

  • Li P, Shi C, Li Z, Muller JP, Drummond J, Li X, Li T, Li Y, Liu J (2013) Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China. Int J Remote Sens 34:1744–1771. https://doi.org/10.1080/01431161.2012.726752

    Article  Google Scholar 

  • Li Z (1994) A comparative study of the accuracy of digital terrain models (DTMs) based on various data models. ISPRS J Photogramm Remote Sens 49:2–11

    Article  Google Scholar 

  • Lopez C (1997) Locating some types of random errors in digital terrain models. Int J Geogr Inf Sci 11:677–698

    Article  Google Scholar 

  • Makineci HB, Karabork H (2018) Evaluation digital elevation model generated by synthetic aperature radar data. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 XXIII ISPRS Congress. pp 57–62

  • Martone M, Sica F, Gonzalez C et al (2018) High-resolution forest mapping from TanDEM-X interferometric data exploiting nonlocal filtering. Remote Sens 10:1–17. https://doi.org/10.3390/rs10091477

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50:885–900

    Google Scholar 

  • Mouratidis A, Briole P, Katsambalos K (2010) SRTM 3″ DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece. Int J Remote Sens 31:6205–6222. https://doi.org/10.1080/01431160903401403

    Article  Google Scholar 

  • Mukul M, Srivastava V, Mukul M (2015) Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network. J Earth Syst Sci 124:1343–1357

    Article  Google Scholar 

  • Muralikrishnan S, Pillai A, Narender B, Reddy S, Venkataraman VR, Dadhwal VK (2013) Validation of Indian National DEM from Cartosat-1 data. J Indian Soc Remote Sens 41:1–13. https://doi.org/10.1007/s12524-012-0212-9

    Article  Google Scholar 

  • Nagajothi V, Geethapriya M, Sharma P (2018) Mapping of seasonal snow cover and snow melt area for Miyar and Bhaga basin in Western Himalayas for hydrological year 2017-2018. In: Advancements in Geospatial Technology for Societal Benefits and Annual Conventions of Indian Society of Geomatics & Indian Society of Remote Sensing. pp 167–168

  • Nikolakopoulos KG, Kamaratakis EK, Chrysoulakis N (2006) SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int J Remote Sens 27:4819–4838. https://doi.org/10.1080/01431160600835853

    Article  Google Scholar 

  • Radhadevi PV, Nagasubramanian V, Mahapatra A et al (2009) Potential of high-resolution Indian remote sensing satellite imagery for large scale mapping. ISPRS Arch XXXVIII-1

  • Rawat KS, Singh SK, Singh MI, Garg BL (2019) Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTER DEM and SRTM DEM with respect to Cartosat-1 DEM. Remote Sens Appl Soc Environ 13:289–297. https://doi.org/10.1016/j.rsase.2018.11.005

    Article  Google Scholar 

  • Rodriguez E, Morris CS, Belz JE, et al (2005) An assessment of the SRTM topographic products

  • Satge F, Bonnet M, Timouk F (2015) Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat / GLAS data. Int J Remote Sens 36:465–488. https://doi.org/10.1080/01431161.2014.999166

    Article  Google Scholar 

  • Stare J (1995) Some properties of R2 in ordinary least squares regression. Metod Zv 10:133–145

    Google Scholar 

  • Suresh D, Yarrakula K (2018) Subsidence monitoring techniques in coal mining: Indian scenario. Indian J Geo-Marine Sci 47:1918–1933

    Google Scholar 

  • Suresh D, Yarrakula K (2019) InSAR based deformation mapping of earthquake using Sentinel 1A imagery. Geocarto Int:1–10. https://doi.org/10.1080/10106049.2018.1544289

  • Suwandana E, Kawamura K, Sakuno Y, Kustiyanto E, Raharjo B (2012) Evaluation of ASTER GDEM2 in comparison with GDEM1, SRTM DEM and topographic-map-derived DEM using inundation area analysis and RTK-dGPS data. Remote Sens 4:2419–2431. https://doi.org/10.3390/rs4082419

    Article  Google Scholar 

  • Varga M, Basic T (2015) Accuracy validation and comparison of global digital elevation models over Croatia. Int J Remote Sens 36:170–189. https://doi.org/10.1080/01431161.2014.994720

    Article  Google Scholar 

  • Velotto D, Bentes C, Tings B, Lehner S (2016) First comparison of Sentinel-1 and TerraSAR-X data in the framework of maritime targets detection: South Italy case. IEEE J Ocean Eng 41:993–1006. https://doi.org/10.1109/JOE.2016.2520216

    Article  Google Scholar 

  • Vigneshkumar M, Yarrakula K (2017) Spatial distribution of Prosopis juliflora using the fusion of hyperspectral and Landsat-8 OLI imagery. Indian J Ecol 44:548–554

    Google Scholar 

  • Visakh S, Muralikrishnan S, Sreedhar S (2016) Improving the elevation accuracy of CARTOSAT-1 DEM. Int J Innov Res Sci Technol 2:117–128

    Google Scholar 

  • Yarrakula K, Deb D, Samanta B (2010) Hydrodynamic modeling of Subernarekha River and its floodplain using remote sensing and GIS techniques. J Sci Ind Res 69:529–536

    Google Scholar 

  • Yarrakula K, Deb D, Samanta B (2013) Comparative evaluation of Cartosat-1 and SRTM imageries for digital elevation modelling. Geo-Spatial Inf Sci 16:75–82. https://doi.org/10.1080/10095020.2012.747645

    Article  Google Scholar 

  • Zhao S, Cheng W, Zhou C, Chen X, Zhang S, Zhou Z, Liu H, Chai H (2011) Accuracy assessment of the ASTER GDEM and SRTM3 DEM: an example in the Loess Plateau and North China Plain of China. Int J Remote Sens 32:8081–8093. https://doi.org/10.1080/01431161.2010.532176

    Article  Google Scholar 

  • Zhou Q (2017) Digital elevation model and digital surface model. Int Encycl Geogr People, Earth, Environ Technol:1–17. https://doi.org/10.1002/9781118786352.wbieg0768

Download references

Acknowledgements

The authors would like to express their sincere thanks to CDMM, VIT, for providing lab facilities. We would like to extend our hearty thanks to the Alaska Satellite Facility for providing access to Sentinel 1 data and ALOS PALSAR DEM. We are thankful to USGS Earth Explorer for providing access to USGS Earth Explorer, CGIARCSI, Bhuvan India, and DLR German Aerospace Centre for providing access to SRTM DEM, ASTER DEM, CartoDEM and TANDEM. The authors are also thankful to Mr. Sitansu Pattnaik and Mr. Kumaran Narayanaswamy from kCube Consulting Services Pvt. Ltd. for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Yarrakula.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaraj, S., Yarrakula, K. Evaluation of Sentinel 1–derived and open-access digital elevation model products in mountainous areas of Western Ghats, India. Arab J Geosci 13, 1103 (2020). https://doi.org/10.1007/s12517-020-06108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06108-w

Keywords

Navigation