Skip to main content

Advertisement

Log in

Fracture network mapping using Landsat-8 OLI, Sentinel-2A, ASTER, and ASTER-GDEM data, in the Rich area (Central High Atlas, Morocco)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Geological mapping using remote sensing is one of the most important applied methods in natural resources exploration. The objectives of this study are mapping and analyzing of fractures distribution in the Rich area in order to understand the influence of lithology and geodynamics on fracture density. For this purpose, we relied on automatic lineament extraction using four types of satellite imagery: Landsat OLI, Sentinel 2A, ASTER L1B, and ASTER Global Digital Elevation Model (GDEM) in order to extract the maximum of lineaments affirmed significative in structural interpretations. After image corrections, the processing of these images is based on the highlighting of structural lineaments and their automatic extraction using the algorithm line of Geomatica software. The validation of linear structures was made based on existing data. The finding showed that each produced map shows systematically a similarity in terms of concentration and orientation with three preferential system-oriented NE-SW, NEE-SSW, E-W, and NNE-SSW. Lineaments mainly follow that of major fault zones, with a high concentration in the North-East part of the study area. This might be due to the importance of the Alpine orogeny deformation as well as the diapirism phenomenon of the Triassic formations in the hiner zone of the Atlas belt. However, the observation shows that the number and total length of structural lineaments could be extracted by using the sentinel 2A then Landsat OLI, ASTER-GDEM, and ASTER L1B set. The automatic extraction allows better mapping of structural lineaments. It shows a good agreement and more information compared with previous geological data, confirming the efficiency of applied techniques in geological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

PCA:

Principal component analysis

OLI :

Operational Land Imager

ASTER :

Advanced Spaceborne Thermal Emission Reflection Radiometer

GDEM:

Global Digital Elevation Model

VNIR:

The visible/near-infrared

SWIR:

The short-wave infrared

TIR:

Thermal infrared

UTM:

Universal Transverse Mercator projection

GIS:

Geographic Information System

References

  • Abdullah A, Akhir JM, Abdullah I (2010) Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran - Sungi Lembing area, Malaysia. Electron J Geotech Eng 15(J):1–9

    Google Scholar 

  • Adiri Z, El Harti A, Jellouli A, Lhissou R, Maacha L, Azmi M, Zouhair M, Bachaoui EM (2017) Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: a case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv Space Res 60(11):2355–2367. https://doi.org/10.1016/j.asr.2017.09.006

    Article  Google Scholar 

  • Ait Addi A, Chafiki D (2013) Sedimentary evolution and palaeogeography of mid-Jurassic deposits of the Central High Atlas, Morocco. J Afr Earth Sci 84:54–69. https://doi.org/10.1016/j.jafrearsci.2013.04.002

  • Akame JM, Mvondo Ondoa J, Olinga JB, Essono J, Mbih PK (2013) Utilisation des modèles numériques de terrain (MNT) SRTM pour la cartographie des linéaments structuraux: Application à l’Archéen de Mezesse à l’est de Sangmélima (Sud-Cameroun). Geo-Eco-Trop 37(1):71–80

    Google Scholar 

  • Arboleya ML, Teixell A, Charroud M, Julivert M (2004) A structural transect through the High and Middle Atlas of Morocco. J Afr Earth Sci 39(3–5):319–327. https://doi.org/10.1016/j.jafrearsci.2004.07.036

    Article  Google Scholar 

  • Babault J, Teixell A, Struth L, Van Den Driessche J, Arboleya ML, Tesón E (2013) Shortening, structural relief and drainage evolution in inverted rifts: insights from the Atlas Mountains, the eastern Cordillera of Colombia and the Pyrenees. Geol Soc Spec Publ 377(1):141–158. https://doi.org/10.1144/SP377.14

    Article  Google Scholar 

  • Beauchamp J (1988) Triassic sedimentation and rifting in the High Atlas (Morocco). In Developments in geotectonics (Vol. 22, Issue C). Elsevier B.V. https://doi.org/10.1016/B978-0-444-42903-2.50025-7

  • Bednarik RG (2019) Rock metamorphosis by kinetic energy. Emerg Sci J 3(5):293–302. https://doi.org/10.28991/esj-2019-01192

    Article  Google Scholar 

  • Benammi M, Arbi Toto E, Chakiri S et al (2001) Les chevauchements frontaux du Haut Atlas central marocain: Styles structuraux et taux de raccourcissement différentiel entre les versants nord et sud. CR Acad Sci Paris 333(4):241–247. https://doi.org/10.1016/S1251-8050(01)01628-7

    Article  Google Scholar 

  • Chacrone C, Hamoumi N (2005) L’Arenig-Llanvirn du Haut Atlas occidental et central (Maroc). Environnements sédimentaires, paléogéographie et contrôle de la sédimentation. Compt Rendus Geosci 337(12):1026–1034. https://doi.org/10.1016/j.crte.2005.05.015

    Article  Google Scholar 

  • Choubert G, Dubar G, Hindermeyer J (1956) Carte géologique du Haut Atlas au nord Ksares Souk et de Boudnib: Feuilles Riche et Boudnib au 1/200 000. Notes et Mémoires Du Service Géologique Du Maroc, N°81

  • Dormishi A, Ataei M, Mikaeil R, Khalo Kakaei R (2018) Relations between texture coefficient and energy consumption of Gang Saws in carbonate rock cutting process. Civil Eng J 4(2):413. https://doi.org/10.28991/cej-0309101

    Article  Google Scholar 

  • Dubar G (1949) Carte géologique provisoire du Haut Atlas de Midelt au 1/200 000. Notes et Mémoires Du Service Géologique Du Maroc, N°59bis

  • El Alaoui El Moujahid H, Ibouh H, Bachnou A, Babram MA, El Harti A (2016) Mapping and analysis of geological fractures extracted by remote sensing on Landsat TM images, example of the Imilchil-Tounfite area (central High Atlas, Morocco). Estud Geol 72(2):051. https://doi.org/10.3989/egeol.42328.394

    Article  Google Scholar 

  • Ghrabawy O El, Soliman N, Tarshan A (2019) Remote sensing signature analysis of ASTER imagery for geological mapping of Gasus area , central eastern desert , Egypt

  • El Harfi A, Guiraud M, Lang J (2006) Deep-rooted “thick skinned” model for the High Atlas Mountains (Morocco). Implications for the structural inheritance of the southern Tethys passive margin. J Struct Geol 28(11):1958–1976. https://doi.org/10.1016/j.jsg.2006.08.011

    Article  Google Scholar 

  • Essaifi A, Zayane R (2018) Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints. J Afr Earth Sci 137:229–245. https://doi.org/10.1016/j.jafrearsci.2017.10.002

    Article  Google Scholar 

  • Ettaki M, Chellaï EH, Milhi A, Sadki D, Boudchiche L (2000) Le passage Lias moyen–Lias supérieur dans la région de Todrha-Dadès : événements bio-sédimentaires et géodynamiques (Haut Atlas central, Maroc). Comptes Rendus de l’Académie Des Sciences - Series IIA - Earth and Planetary Science, 331(10), 667–674. https://doi.org/10.1016/s1251-8050(00)01458-0

  • Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11(3):326–335. https://doi.org/10.1016/j.gr.2006.02.010

    Article  Google Scholar 

  • Haddoumi H, Charrière A, Feist M, Andreu B (2002) Nouvelles datations (Hauterivien supérieur-Barrémien inférieur) dans les «Couches rouges» continentales du Haut Atlas central marocain ; conséquences sur l’âge du magmatisme et des structurations mésozoïques de la chaîne Atlasique. Comptes Rendus Palevol 1(5):259–266. https://doi.org/10.1016/S1631-0683(02)00039-8

    Article  Google Scholar 

  • Hamdani N (2019) Fracture network mapping using Landsat 8 OLI data and linkage with the Karst system: a case study of the Moroccan Central Middle Atlas

  • Hashim M, Ahmad S, Johari MAM, Pour AB (2013) Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Adv Space Res 51(5):874–890. https://doi.org/10.1016/j.asr.2012.10.004

    Article  Google Scholar 

  • Hassan MA, Adhab SS (2014) Lineament automatic extraction analysis for Galal Badra river basin using Landsat 8 satellite image. Iraqi Journal of Physics 12(25):55–44

  • Ibouh H (2004) Du rift avorté au bassin sur décrochement, contrôles tectonique et sédimentaire pendant le Jurassique (Haut Atlas central, Maroc). Université de Marrakech, Maroc

  • Igmoullan B, Sadki D, Fedan B, Chellai EH (2001) Evolution géodynamique du Haut-Atlas de Midelt ( Maroc ) pendant le Jurassique: un exemple d’interaction entre la tectonique et l’eustatisme. Bulletin de l’Institut Scientifique 23(October 2014):47–54

    Google Scholar 

  • Javhar A, Chen X, Bao A, Jamshed A, Yunus M, Jovid A, Latipa T (2019) Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir. Remote Sens 11(7):1–29. https://doi.org/10.3390/rs11070778

    Article  Google Scholar 

  • Kassou A, Essahlaoui A, Aissa M et al (2012) Extraction of structural lineaments from satellite images Landsat 7 ETM+ of Tighza Mining District (Central Morocco). Res J Earth Sci 4(2):44–48. https://doi.org/10.5829/idosi.rjes.2012.4.2.1110

    Article  Google Scholar 

  • Kumar S, Bhandary T (2015) Comparative study of Landsat and Aster data by morphometric analysis. Civil Eng J 1(2):21–25. https://doi.org/10.28991/cej-2015-00000007

    Article  Google Scholar 

  • Laville E (1985) Evolutions sédimentaire, tectonique et magmatique du bassin jurassique du Haut Atlas (Maroc) : modèles en relais multiple de décrochements. Univ. Montpellier, France

  • Laville E (1988) A multiple releasing and restraining stepover model for the Jurassic strike-slip basin of the Central High Atlas (Morocco). In Developments in Geotectonics (Vol. 22, Issue C). Elsevier B.V. https://doi.org/10.1016/B978-0-444-42903-2.50026-9

  • Mafi Gholami D, Baharlouii M (2019) Monitoring long-term mangrove shoreline changes along the Northern Coasts of the Persian Gulf and the Oman Sea. Emerg Sci J 3(2):88. https://doi.org/10.28991/esj-2019-01172

    Article  Google Scholar 

  • Mallast U, Gloaguen R, Geyer S (2011) Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. 2665–2678. https://doi.org/10.5194/hess-15-2665-2011

  • Michard A, Ibouh H, Charrière A (2011) Syncline-topped anticlinal ridges from the High Atlas: a Moroccan conundrum, and inspiring structures from the Syrian Arc, Israel. Terra Nova 23(5):314–323. https://doi.org/10.1111/j.1365-3121.2011.01016.x

    Article  Google Scholar 

  • Mouissi S, Alayat H (2016) Utilisation de l’Analyse en Composantes Principales (ACP) pour la Caractérisation Physico-Chimique des Eaux d’un Ecosystème Aquatique: Cas du Lac Oubéira (Extrême NE Algérien). J Mater Environ Sci 7(6):2214–2220

    Google Scholar 

  • Nouayti N, Khattach D, Hilali M (2017) Cartographie des zones potentielles pour le stockage des eaux souterraines dans le haut bassin du Ziz (Maroc): Apport de la télédétection et du système d’information géographique. Bulletin de l’Institut Scientifique, Section Sciences de La Terre 39:45–57

    Google Scholar 

  • Oo MM, Kyi CCT, Zin WW (2019) Historical morphodynamics assessment in bridge areas using remote sensing and GIS techniques. Civil Eng J 5(11):2515–2524. https://doi.org/10.28991/cej-2019-03091429

    Article  Google Scholar 

  • Ouanaimi H, Soulaimani A, Baidder L, Eddebbi A, Hoepffner C (2018) Unraveling a distal segment of the West African Craton Paleozoic margin: stratigraphy of the Mougueur inlier of the eastern High Atlas, Morocco. Compt Rendus Geosci 350(6):289–298. https://doi.org/10.1016/j.crte.2018.06.008

    Article  Google Scholar 

  • Pour AB, Hashim M (2012) Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran. Adv Space Res 49(4):753–769. https://doi.org/10.1016/j.asr.2011.11.028

    Article  Google Scholar 

  • Sedrette S, Rebaï N (2016) Automatic extraction of lineaments from Landsat Etm+ images and their structural interpretation: Case Study in Nefza region (North West of Tunisia). J Res Environ Earth Sci 2018:139–145 http://earthexplorer.usgs.gov

    Google Scholar 

  • Si Mhamdi H, Raji M, Oukassou M (2016) Utilisation de la Télédétection dans la Cartographie Automatique des Linéaments Géologiques du Granitoïde de Tichka ( Haut Atlas Occidental ). 142(4), 321–333

  • Si Mhamdi H, Raji M, Maimouni S, Oukassou M (2017) Fractures network mapping using remote sensing in the Paleozoic massif of Tichka (Western High Atlas, Morocco). Arab J Geosci, 10(5). https://doi.org/10.1007/s12517-017-2912-5

  • Teixell A, Arboleya ML, Julivert M, Charroud M (2003) Tectonic shortening and topography in the central High Atlas (Morocco). Tectonics 22(5). https://doi.org/10.1029/2002TC001460

  • Teixell A, Barnolas A, Rosales I, Arboleya ML (2017) Structural and facies architecture of a diapir-related carbonate minibasin (lower and middle Jurassic, High Atlas, Morocco). Mar Pet Geol 81:334–360. https://doi.org/10.1016/j.marpetgeo.2017.01.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtissame Bentahar.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentahar, I., Raji, M. & Si Mhamdi, H. Fracture network mapping using Landsat-8 OLI, Sentinel-2A, ASTER, and ASTER-GDEM data, in the Rich area (Central High Atlas, Morocco). Arab J Geosci 13, 768 (2020). https://doi.org/10.1007/s12517-020-05736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05736-6

Keywords

Navigation