Skip to main content

Advertisement

Log in

Phreatomagmatic plioquaternary volcanism in the Middle Atlas: Analysis of the eruptive sequence of the Lechmine n’Aït El Haj maar

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Lechmine n’Aït El Haj (LNH) is a monogenetic plioquaternary maar, lying in the volcanic province of the MiddleAtlas. It is a 110-m-deep crater located in the Liassic limestones. The tephra deposits surrounding the crater are mainly made up of depositional units (surges and projectas) interpreted as deposits of phreatomagmatic origin. They are topped by a small unit of massive breccia tuff reflecting magmatic deposits. The maar is a result of the interaction between the ascending magma and karstic water, in an intraplate volcanism context.

Water, causing this eruption, is drained by an open system of fractures in the limestone. The explosion started by phreatomagmatic dynamism, producing a big stack of pyroclastic deposits and pyroclastic falls. During the eruption, the crater grows progressively from the eruptive center to the Northwest. The upper part of the phreatomagmatic deposits is characterized by a typical mud crack structure. A transition to a strombolian dynamism occurred throughout the end of volcanic activity. Meanwhile, a lava flow, coming from the volcanic plateau, discharged in the crater’s center. With the eruption resumption, the lava is strongly fragmented; therefore, a small cone is created especially in the northern flank of the maar. Towards the end of the volcanic activity, a supply of karstic water causes another transition of the eruptive style from strombolian to phreatomagmatic dynamism. A significant karst collapse in the southern flank of the LNH maar has occurred, leading to its current morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aranda-Gómez J, Luhr JF (1996) Origin of the Joya Honda maar, San Luis Potosi, Mexico. J Volcanol Geotherm Res 74:1–18

    Article  Google Scholar 

  • Brand BD, Clarke AB, Semken S (2009) Eruptive conditions and depositional processes of Narbona Pass Maar volcano, Navajo volcanic field, Navajo Nation, New Mexico (USA). Bull Volcanol 71:49–77. https://doi.org/10.1007/s00445-008-0209-y

    Article  Google Scholar 

  • Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites, Geological Society memoir. Geological Society, London

    Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island. South Korea. Contrib. Mineral. Petrol 160:931–950. https://doi.org/10.1007/s00410-010-0515-1

    Article  Google Scholar 

  • Cas R, Wright JV (1987) Volcanic successions modern and ancient: a geological approach to processes, productsand successions. Springer Science & Business Media

  • Chateauneuf JJ, Reyre Y (1974) Eléments de palynologie. Applications géologiques. Cours de 3eme cycle en science de la terre

  • Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, ChejuIsland, Korea. Sedimentology 37:1115–1135

    Article  Google Scholar 

  • Crowe BM, Fisher RV (1973) Sedimentary structures in base-surge deposits with special reference to cross-bedding,Ubehebe Craters, Death Valley, California. Geol Soc Am Bull 84:663–682

    Article  Google Scholar 

  • Dellino P, La Volpe L (2000) Structures and grain size distribution in surge deposits as a tool for modelling thedynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy). ScienceDirect J Volcanol Geotherm Ressour 96:57–78. https://doi.org/10.1016/S0377-0273(99)00140-7

    Article  Google Scholar 

  • Dellino P, Frazzetta G, La Volpe L (1990) Wet surge deposits at La Fossa di Vulcano: Depositional and eruptive mechanisms. J Volcanol Geotherm Res 43:215–233

    Article  Google Scholar 

  • Doronzo DM (2012) Two new end members of pyroclastic density currents: forced convection-dominated and inertia-dominated. J. Volcanol. Geotherm. Res. 219:87–91

    Article  Google Scholar 

  • Edney W (1984) The Geology of the Tower Hill Volcanic Centre (Unpublished MSc thesis). Monash University, Australia

    Google Scholar 

  • El Azzouzi M, Maury RC, Bellon H, Youbi N, Cotten J, Kharbouch F (2010) Petrology and K-Ar chronology of theNeogene-Quaternary Middle Atlas basaltic province, Morocco. Bull Société Géologique Fr 181:243–257

    Article  Google Scholar 

  • Fisher RV (1966) Rocks composed of volcanic fragments and their classification. Earth Sci Rev 1:287–298

    Article  Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic Rocks. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  • Fisher RV, Waters AC (1970) Base surge bed forms in maar volcanoes. Am J Sci 268:157–180. https://doi.org/10.2475/ajs.268.2.157

    Article  Google Scholar 

  • Giordano G (1998) Facies characteristics and magma–water interaction of the White Trachytic Tuffs (Roccamonfina Volcano, southern Italy). Bull Volcanol 60:10–26

    Article  Google Scholar 

  • Giordano G, Doronzo DM (2017) Sedimentation and mobility of PDCs: a reappraisal of ignimbrites’ aspect ratio. Sci. Rep. 7:4444

    Article  Google Scholar 

  • Harmand C, Cantagrel JM (1984) Le volcanisme alcalin tertiaire et quaternaire du moyen atlas (Maroc): chronologieK/Ar et cadre géodynamique. J Afr Earth Sci 2:51–55. https://doi.org/10.1016/0899-5362(84)90019-8

    Article  Google Scholar 

  • Harmand C, Moukadiri A (1986) Synchronisme entre tectonique compressive et volcanisme alcalin; exemple de laprovince quaternaire du Moyen Atlas (Maroc). Bull Société Géologique Fr. II II:595–603. https://doi.org/10.2113/gssgfbull.II.4.595

    Article  Google Scholar 

  • Houghton BF, Hackett WR (1984) Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, NewZealand: A complex interaction between external water and rising basaltic magma. J Volcanol Geotherm Res 21:207–231. https://doi.org/10.1016/0377-0273(84)90023-4

    Article  Google Scholar 

  • Houghton BF, Smith RT (1993) Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55:414–420. https://doi.org/10.1007/BF00302001

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: acase study from New Zealand. J Volcanol Geotherm Res 91:97–120. https://doi.org/10.1016/S0377-0273(99)00058

    Article  Google Scholar 

  • Johnson PJ, Valentine GA, Cortés JA, Tadini A (2014) Basaltic tephra from monogenetic Marcath Volcano, centralNevada. J Volcanol Geotherm Res 281:27–33. https://doi.org/10.1016/j.jvolgeores.2014.05.007

    Article  Google Scholar 

  • Jordan SC, Jowitt SM, Cas RAF (2015) Origin of temporal - compositional variations during the eruption of Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. Bull Volcanol 77:883

    Article  Google Scholar 

  • Kokelaar P, Raine P, Branney MJ (2007) Incursion of a large-volume, spatter-bearing pyroclastic density current intoa caldera lake: Pavey Ark ignimbrite, Scafell caldera, England. Bull Volcanol 70:23–54. https://doi.org/10.1007/s00445-007-0118-5

    Article  Google Scholar 

  • Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204. https://doi.org/10.1007/BF02597130

    Article  Google Scholar 

  • Lorenz V (1974) Vesiculated tuffs and associated features. Sedimentology 21:273–291

    Article  Google Scholar 

  • Lorenz V (1975) Formation of phreatomagmatic maar–diatreme volcanoes and its relevance to kimberlite diatremes. In: Ahrens LH, Dawson JB, Duncan AR, Erlank AJ (eds) Physics and Chemistry of the Earth Pergamon, pp 17–27

    Chapter  Google Scholar 

  • Lorenz V (1985) Maars and diatremes of phreatomagmatic origin; a review. South Afr J Geol 88:459–470

    Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines 15:72–83

    Google Scholar 

  • Martin J (1981) Le Moyen Atlas central étude géomorphologique. Editions du Service géologique du Maroc

  • Martin U, Nemeth K (2007) Practical volcanology Lecture notes for understanding volcanic rocks from field basedstudies. Geological Institute of Hungary

  • McPhie J, Walker GP, Christiansen RL (1990) Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii. AD: Keanakakoi Ash Member. Bull Volcanol 52: 334–354

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures. Guide Interpret. Textures Volcan. Rocks Tasman. Gov. Print. Off. Tasman. 196

  • Menjour F, Remmal T, Hakdaoui M, El Kamel F, Lakroud K, Amraoui F, El Amrani El Hassani I, Van Wyk de Vries B, Boivin P (2017) Role of Fracturing in the Organization of the Karst Features of Azrou Plateau (MiddleAtlas, Morroco) Studied by Remote Sensing Imagery. J Indian Soc Remote Sens 45:1015–1030. https://doi.org/10.1007/s12524-016-0646-6

    Article  Google Scholar 

  • Mountaj S, Remmal T, El Amrani El Hassani I, Van Wyk de Vries B (2014) Reconstruction of the morphological evolution and the eruptive dynamics of the lachmine n’Ait el Haj Maar in the Middle Atlas. In: Karstic province of Morocco. Proceeding 5th Int Maar Conf Quéretaro Mex, pp 4–5

    Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. Geological Society of America:43–66

  • Németh K, White JD (2003) Reconstructing eruption processes of a Miocene monogenetic volcanic field from ventremnants: Waipiata Volcanic Field, South Island, New Zealand. J Volcanol Geotherm Res 124:1–21. https://doi.org/10.1016/S0377-0273(03)00042-8

    Article  Google Scholar 

  • Németh K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin,Hungary). J Volcanol Geotherm. Res 111:111–135. https://doi.org/10.1016/S0377-0273(01)00223-2

    Article  Google Scholar 

  • Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855

    Article  Google Scholar 

  • Sohn YK, Cronin SJ, Brenna M, Smith IEM, Nemeth K, White JDL, Murtagh RM, Jeon YM, Kwon CW (2012) Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiplemagma pulses, shifting vents, and discrete eruptive phases. Geol Soc Am Bull 124:259–274. https://doi.org/10.1130/B30447.1

    Article  Google Scholar 

  • Sulpizio R, Mele D, Dellino P, La Volpe L (2007) Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Sedimentology 54:607–635. https://doi.org/10.1111/j.1365-3091.2006.00852.x

    Article  Google Scholar 

  • Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J. Volcanol. Geotherm. Res. 283:36–65. https://doi.org/10.1016/j.jvolgeores.2014.06.014

    Article  Google Scholar 

  • Takada (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygeneticvolcanism. J Geophys Res Solid Earth 99:13563–13573. https://doi.org/10.1029/94JB00494

    Article  Google Scholar 

  • Tchamabé B, Youmen D, Owona S, Issa Ohba T, Németh K, Ngapna M, Asaah A, Aka F, Tanyileke G, Hell J (2013) Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: Constraints from volcanic facies analysis. Open Geosci. https://doi.org/10.2478/s13533-012-0147-2

  • Tchamabé BC, Kereszturi G, Németh K, Carrasco-Núñez G (2016) How Polygenetic are Monogenetic Volcanoes: Case Studies of Some Complex Maar-Diatreme Volcanoes. in: Nemeth K (ed.) Updates in Volcanology - From Volcano Modelling to Volcano Geology InTech

  • Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49:616–630

    Article  Google Scholar 

  • Valentine GA, Giannetti B (1995) Single pyroclastic beds deposited by simultaneous fallout and surge processes:Roccamonfina volcano, Italy. J Volcanol Geotherm Res 64:129–137

    Article  Google Scholar 

  • Valentine GA, Buesch DC, Fisher RV (1989) Basal layered deposits of the Peach Springs Tuff, northwesternArizona, USA. Bull Volcanol 51:395–414. https://doi.org/10.1007/BF01078808

    Article  Google Scholar 

  • Valentine GA, Perry FV, Wolde G (2000) Field characteristics of deposits from spatter-rich pyroclastic densitycurrents at Summer Coon volcano, Colorado. J Volcanol Geotherm Res 104:187–199. https://doi.org/10.1016/S0377-0273(00)00206-7

    Article  Google Scholar 

  • Walker GPL, Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (2000) Basaltic volcanoes and volcanicsystems. In: Encyclopedia of Volcanoes. Academic Press, pp 283–289

  • White JD (1996) Pre-emergent construction of a lacustrine basaltic volcano, Pahvant Butte, Utah (USA). Bull Volcanol 58:249–262

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: A review. J Volcanol Geotherm Res From maars to scoriacones: the enigma of monogenetic volcanic fields 201:1–29. https://doi.org/10.1016/j.jvolgeores.2011.01.010

    Article  Google Scholar 

  • White JDL, Schmincke HU (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruptionon La Palma (Canary Islands). J Volcanol Geotherm Res 94:283–304. https://doi.org/10.1016/S0377-0273(99)00108-0

    Article  Google Scholar 

  • Wohletz KH, McQueen RG (1984) Volcanic and stratospheric dustlike particles produced by experimental watermelt nteractions. Geology 12:591–594. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions; II, Evolution of basaltic tuff rings and tuff cones. Am J Sci 283: 385–413 https://doi.org/10.2475/ajs.283.5.385

  • Zimanowski B, Fröhlich G, Lorenz V (1995) Experiments on steam explosion by interaction of water with silicate melts. Nucl Eng Des 155:335–333

    Article  Google Scholar 

Download references

Acknowledgments

This study belongs to the multidisciplinary research project on the Geomaterials and Volcanic Geosites of Morocco: need for their valorization and exploitation in the prospects for a sustainable development, sponsored by Hassan II Academy of Sciences and Techniques. Many thanks to the research team, professors and Ph.D. students, in Faculty of Sciences of Hassan II University-Casablanca, the Scientific Institute in Rabat and the Faculty of Sciences and Techniques of Hassan II University—Mohammadia. Special thanks to Domenico M Doronzo for his relevant comments and questions that allowed me to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Mountaj.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mountaj, S., Remmal, T., El Hassani El Amrani, IE. et al. Phreatomagmatic plioquaternary volcanism in the Middle Atlas: Analysis of the eruptive sequence of the Lechmine n’Aït El Haj maar. Arab J Geosci 13, 559 (2020). https://doi.org/10.1007/s12517-020-05554-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05554-w

Keywords

Navigation